985 resultados para Fit-body
Resumo:
Biological dose escalation through stereotactic ablative radiotherapy (SABR) holds promise of improved patient convenience, system capacity and tumor control with decreased cost and side effects. The objectives are to report the toxicities, biochemical and pathologic outcomes of this prospective study.
Resumo:
In this paper we conduct a number of experiments to assess the impact of typical human body movements on the signal characteristics of outdoor body-to-body communications channels using flexible patch antennas. A modified log-distance path loss model which accounts for body shadowing and signal fading due to small movements is used to model the measured data. For line of sight channels, in which both ends of the body-to-body link are stationary, the path loss exponent is close to that for free space, although the received signal is noticeably affected by involuntary or physiological-related movements of both persons. When one person moves to obstruct the direct signal path between nodes, attenuation by the person's body can be as great as 40 dB, with even greater variation observed due to fading. The effects of movements such as rotation, tilt, walking in line of sight and non-line of sight on body-to-body communications channels are also investigated in this study. © 2011 IEEE.
Resumo:
Background: Epidemiologic evidence on the influence of dietary glycemic index (GI) and glycemic load (GL) on the development of obesity is limited.
Objective: This prospective study examined the associations between dietary GI and GL and changes in body composition measures during adolescence.
Design: In a representative sample of Northern Irish adolescents aged 12 years at baseline and 15 years at follow-up (n=426), dietary intake was assessed by a diet history interview. Body composition measures included body mass index (BMI; kg m(-2)), BMI z-score, sum of four skinfold thicknesses, percentage body fat, fat mass index (FMI; kg m(-2)) and fat-free mass index (kg m(-2)).
Results: After adjustment for potential confounding factors, baseline GI was associated with increased change in FMI. Mean (95% confidence interval) values of changes in FMI according to tertiles of baseline GI were 0.41 (0.25, 0.57), 0.42 (0.26, 0.58) and 0.67 (0.51, 0.83) kg m(-2), respectively (P for trend=0.03). There was no significant association of baseline GI with changes in other body composition measures (P for trend0.054). Conversely, baseline GL showed no association with changes in any of the measures (P for trend0.41). Furthermore, changes in GI or GL were not associated with changes in any of the measures (P for trend0.16).
Conclusion: Dietary GI at age 12 years was independently associated with increased change in FMI between ages 12 and 15 years in a representative sample from Northern Ireland, whereas dietary GL showed no association with changes in any of the body composition measures examined.
Resumo:
This chapter considers the radical re-imaginings of traditional Irish step dance in the recent works of Jean Butler and Colin Dunne. In Butler's Does She Take Sugar (2007) and Dunne's Out of Time (2008), the Irish step dancing body is separated from its historical roots in nationalism, from the exhibitionism required by the competitive form, and from the spectacularization of the commercialized theatrical format. In these works, which are both solo pieces performed by the choreographers themselves, the traditional form undergoes a critical interrogation in which the dancers attempt to depart from the determinacy of the traditional technique, while acknowledging its formation of their corporealities; the Irish step dance technique becomes a springboard for creative experimentation. In order to consider the importance of the creative potential revealed by these works, this chapter will contextualize them within the dance background from which they emerged, outlining the history of competitive step dancing in Ireland, the "modernization" of traditional Irish dance with the emergence of Riverdance (1994), and the experiments of Ireland's national folk theatre, Siamsa Tíre.
Resumo:
Objective
To investigate the effect of fast food consumption on mean population body mass index (BMI) and explore the possible influence of market deregulation on fast food consumption and BMI.
Methods
The within-country association between fast food consumption and BMI in 25 high-income member countries of the Organisation for Economic Co-operation and Development between 1999 and 2008 was explored through multivariate panel regression models, after adjustment for per capita gross domestic product, urbanization, trade openness, lifestyle indicators and other covariates. The possible mediating effect of annual per capita intake of soft drinks, animal fats and total calories on the association between fast food consumption and BMI was also analysed. Two-stage least squares regression models were conducted, using economic freedom as an instrumental variable, to study the causal effect of fast food consumption on BMI.
Findings
After adjustment for covariates, each 1-unit increase in annual fast food transactions per capita was associated with an increase of 0.033 kg/m2 in age-standardized BMI (95% confidence interval, CI: 0.013–0.052). Only the intake of soft drinks – not animal fat or total calories – mediated the observed association (β: 0.030; 95% CI: 0.010–0.050). Economic freedom was an independent predictor of fast food consumption (β: 0.27; 95% CI: 0.16–0.37). When economic freedom was used as an instrumental variable, the association between fast food and BMI weakened but remained significant (β: 0.023; 95% CI: 0.001–0.045).
Conclusion
Fast food consumption is an independent predictor of mean BMI in high-income countries. Market deregulation policies may contribute to the obesity epidemic by facilitating the spread of fast food.
Resumo:
With the growing interest in the topic of attribute non-attendance, there is now widespread use of latent class (LC) structures aimed at capturing such behaviour, across a number of different fields. Specifically, these studies rely on a confirmatory LC model, using two separate values for each coefficient, one of which is fixed to zero while the other is estimated, and then use the obtained class probabilities as an indication of the degree of attribute non-attendance. In the present paper, we argue that this approach is in fact misguided, and that the results are likely to be affected by confounding with regular taste heterogeneity. We contrast the confirmatory model with an exploratory LC structure in which the values in both classes are estimated. We also put forward a combined latent class mixed logit model (LC-MMNL) which allows jointly for attribute non-attendance and for continuous taste heterogeneity. Across three separate case studies, the exploratory LC model clearly rejects the confirmatory LC approach and suggests that rates of non-attendance may be much lower than what is suggested by the standard model, or even zero. The combined LC-MMNL model similarly produces significant improvements in model fit, along with substantial reductions in the implied rate of attribute non-attendance, in some cases even eliminating the phenomena across the sample population. Our results thus call for a reappraisal of the large body of recent work that has implied high rates of attribute non-attendance for some attributes. Finally, we also highlight a number of general issues with attribute non-attendance, in particular relating to the computation of willingness to pay measures.
Resumo:
We analyze the nature of the statistics of the work done on or by a quantum many-body system brought out of equilibrium. We show that, for the sudden quench and for an initial state that commutes with the initial Hamiltonian, it is possible to retrieve the whole nonequilibrium thermodynamics via single projective measurements of observables. We highlight, in a physically clear way, the qualitative implications for the statistics of work coming from considering processes described by operators that either commute or do not commute with the unperturbed Hamiltonian of a given system. We consider a quantum many-body system and derive an expression that allows us to give a physical interpretation, for a thermal initial state, to all of the cumulants of the work in the case of quenched operators commuting with the unperturbed Hamiltonian. In the commuting case, the observables that we need to measure have an intuitive physical meaning. Conversely, in the noncommuting case, we show that, although it is possible to operate fully within the single-measurement framework irrespectively of the size of the quench, some difficulties are faced in providing a clear-cut physical interpretation to the cumulants. This circumstance makes the study of the physics of the system nontrivial and highlights the nonintuitive phenomenology of the emergence of thermodynamics from the fully quantum microscopic description. We illustrate our ideas with the example of the Ising model in a transverse field showing the interesting behavior of the high-order statistical moments of the work distribution for a generic thermal state and linking them to the critical nature of the model itself.
Resumo:
We investigate whether the presence of a human body in wearable communications should be considered as part of the radiating structure or as part of the local radio environment. The Rician $K$ -factor was employed as a quantitative measure of the effect of the user's body for five environments and two mounting locations. Presented empirical results indicated that the environment had a greater impact on the $K$-factor values than the position of the transmit antenna for the ultrawideband signals used, confirming that the human body should be considered primarily as part of the overall radiating system when the antenna is worn on the body. Furthermore, independent variations also existed in the $K$-factor values for the differing antenna-body mounting positions, indicating that as the position changed, then the radiating effects and the contribution from the body changed. This is significant for ensuring body-antenna systems are accurately modeled in system-level simulations.
Resumo:
This paper presents a new statistical signal reception model for shadowed body-centric communications channels. In this model, the potential clustering of multipath components is considered alongside the presence of elective dominant signal components. As typically occurs in body-centric communications channels, the dominant or line-of-sight (LOS) components are shadowed by body matter situated in the path trajectory. This situation may be further exacerbated due to physiological and biomechanical movements of the body. In the proposed model, the resultant dominant component which is formed by the phasor addition of these leading contributions is assumed to follow a lognormal distribution. A wide range of measured and simulated shadowed body-centric channels considering on-body, off-body and body-to-body communications are used to validate the model. During the course of the validation experiments, it was found that, even for environments devoid of multipath or specular reflections generated by the local surroundings, a noticeable resultant dominant component can still exist in body-centric channels where the user's body shadows the direct LOS signal path between the transmitter and the receiver.
Resumo:
Multidisciplinary practice has become an accepted approach in many education and social and health care fields. In fact, the right to a multidisciplinary assessment is enshrined in the United Nations Convention of the Rights for Persons with Disabilities (United Nations, 2007). In order to avert a 'one size fits all' response to particularly heterogeneous diagnoses, such as autism spectrum disorders (ASD), the National Institute for Clinical Excellence (NICE) recommends multidisciplinary input. Yet, multidisciplinarity lacks empirical evidence of effectiveness, is fraught with conceptual difficulties and methodological incompatibilities, and therefore there is a danger of resorting to an ill-defined eclectic 'hodgepodge' of interventions. Virtually all evidence-based interventions in autism and intellectual disabilities are behaviourally based. Not surprisingly, therefore, professionals trained in behaviour analysis to international standards are increasingly becoming key personnel in multidisciplinary teams. In fact, professionals from a range of disciplines seek training in behaviour analysis. In this article we brought together a multidisciplinary group of professionals from education, health, and social care, most of whom have a dual qualification in an allied health, social care, or educational profession, as well as in behaviour anlaysis. Together we look at the initial training in these professions and explore how behaviour analysis can offer a common and coherent conceptual framework for true multidisciplinarity, based on sound scientific knowledge about behaviour, without resort to reifying theories. We illustrate how this unifying approach can enhance evidence-based multidisciplinary practice so that 'one size' will fit all. Copyright © Australian Psychological Society Ltd 2014.
Resumo:
The human body is an extremely challenging environment for the operation of wireless communications systems, not least because of the complex antenna-body electromagnetic interaction effects which can occur. This is further compounded by the impact of movement and the propagation characteristics of the local environment which all have an effect upon body centric communications channels. As the successful design of body area networks (BANs) and other types of body centric system is inextricably linked to a thorough understanding of these factors, the aim of this paper is to conduct a survey of the current state of the art in relation to propagation and channel models primarily for BANs but also considering other types of body centric communications. We initially discuss some of the standardization efforts performed by the Institute of Electrical and Electronics Engineers 802.15.6 task group before focusing on the two most popular types of technologies currently being considered for BANs, namely narrowband and Ultrawideband (UWB) communications. For narrowband communications the applicability of a generic path loss model is contended, before presenting some of the scenario specific models which have proven successful. The impacts of human body shadowing and small-scale fading are also presented alongside some of the most recent research into the Doppler and time dependencies of BANs. For UWB BAN communications, we again consider the path loss as well as empirical tap delay line models developed from a number of extensive channel measurement campaigns conducted by research institutions around the world. Ongoing efforts within collaborative projects such as Committee on Science and Technology Action IC1004 are also described. Finally, recent years have also seen significant developments in other areas of body centric communications such as off-body and body-to-body communications. We highlight some of the newest relevant research in these areas as well as discussing some of the advanced topics which are currently being addressed in the field of body centric communications. Key Points Channel models for body centric comms ©2014. The Authors.