987 resultados para Field theory (Physics)
Resumo:
In this work we show how to define the action of a scalar field such that the Robin boundary condition is implemented dynamically, i.e. as a consequence of the stationary action principle. We discuss the quantization of that system via functional integration. Using this formalism, we derive an expression for the Casimir energy of a massless scalar field under Robin boundary conditions on a pair of parallel plates, characterized by constants c(1) and c(2). Some special cases are discussed; in particular, we show that for some values of cl and c(2) the Casimir energy as a function of the distance between the plates presents a minimum. We also discuss the renormalization at one-loop order of the two-point Green function in the philambda(4) theory subject to the Robin boundary condition on a plate.
Resumo:
The metal-insulator or metal-amorphous semiconductor blocking contact is still not well understood. Here, we discuss the steady state characteristics of a non-intimate metal-insulator Schottky barrier. We consider an exponential distribution (in energy) of impurity states in addition to impurity states at a single energy level within the depletion region. We present analytical expressions for the electrical potential, field, thickness of depletion region, capacitance, and charge accumulated in the depletion region. We also discuss ln I versus V(ap) data. Finally, we compare the characteristics in three cases: (i) impurity states at only a single energy level; (ii) uniform energy distribution of impurity states; and (iii) exponential energy distribution of impurity states.In general, the electrical characteristics of Schottky barriers and metal-insulator-metal structures with Schottky barriers depend strongly on the energy distribution of impurity states.
Resumo:
We compute the semiclassical magnetization and susceptibility of non-interacting electrons, confined by a smooth two-dimensional potential and subjected to a uniform perpendicular magnetic field, in the general case when their classical motion is chaotic. It is demonstrated that the magnetization per particle m(B) is directly related to the staircase function N(E), which counts the single-particle levels up to energy E. Using Gutzwiller's trace formula for N, we derive a semiclassical expression for m. Our results show that the magnetization has a non-zero average, which arises from quantum corrections to the leading-order Weyl approximation to the mean staircase and which is independent of whether the classical motion is chaotic or not. Fluctuations about the average are due to classical periodic orbits and do represent a signature of chaos. This behaviour is confirmed by numerical computations for a specific system.
Resumo:
The metal-insulator or metal-amorphous semiconductor blocking contact is still not well understood. Here, the intimate metal-insulator and metal-oxide-insulator contact are discussed. Further, the steady-state characteristics of metal-oxide-insulator-metal structures are also discussed. Oxide is an insulator with wider energy band gap (about 50 Å thick). A uniform energetic distribution of impurities is considered in addition to impurities at a single energy level inside the surface charge region at the oxide-insulator interface. Analytical expressions are presented for electrical potential, field, thickness of the depletion region, capacitance, and charge accumulated in the surface charge region. The electrical characteristics are compared with reference to relative densities of two types of impurities. ln I is proportional to the square root of applied potential if energetically distributed impurities are relatively important. However, distribution of the electrical potential is quite complicated. In general energetically distributed impurities can considerably change the electrical characteristics of these structures.
Resumo:
The theory of vibronic transitions in rare earth compounds is re-examined in the light of a more reliable representation for the ligand field Hamiltonian than the crude electrostatic model. General expressions that take into account the relevant contributions from the forced electric dipole and dynamic coupling mechanisms are derived for the vibronic intensity parameters. These include additional terms, from charge and polarizability gradients, which have not been considered in previous work. Emphasis is given to the relative signs of these various contributions. Under certain approximations these expressions may be conveniently written in terms of accessible ligand field parameters. A comparison with experimental values for the compounds Cs2NaEuCl6 and LiEuF4 is made and satisfactory agreement between theory and experiment is found. A discussion is given on the sensitivity of the calculated intensities to the values of radial integrals, interconfigurational energy differences and ligand field parameters that may be used. Finally, the problem in which a vibronic and an electronic level are in resonance, or near resonance, is analyzed. Suitable expressions to describe the effects of the even-rank components of the vibronic Hamiltonian are obtained. It is found that, depending on the strength of the vibronic interaction and the resonance conditions, the admixture between these two levels may lead to intensities of nearly equal values. © 1995.
Resumo:
In this letter we apply an alternative approach, recently developed, to the description of massless particles of arbitrary spin to the case of spin-two particles. This provides a non-geometrical approach to the theory of linearized gravitation. Within this method the chiral components of a spinor field are treated as independent field variables. The free field Lagrangian is built up from the requirement of chiral invariance. This formulation is parallel to the neutrino theory and leads to a formulation that generalizes, to particles of spin-two, the two-component neutrino theory. At the free field level the analog of curvature tensor, spin connection tensor, and metric tensor are independent quantities. By introducing left-right asymmetric linear interactions of these chiral components we get the linearized gravitation theory.
Resumo:
In the framework of the teleparallel equivalent of general relativity, we study the dynamics of a gravitationally coupled electromagnetic field. It is shown that the electromagnetic field is able not only to couple to torsion, but also, through its energy-momentum tensor, produce torsion. Furthermore, it is shown that the coupling of the electromagnetic field with torsion preserves the local gauge invariance of Maxwell's theory.
Resumo:
Some properties of the higher grading integrable generalizations of the conformal affine Toda systems are studied. The fields associated to the non-zero grade generators are Dirac spinors. The effective action is written in terms of the Wess-Zumino-Novikov-Witten (WZNW) action associated to an affine Lie algebra, and an off-critical theory is obtained as the result of the spontaneous breakdown of the conformal symmetry. Moreover, the off-critical theory presents a remarkable equivalence between the Noether and topological currents of the model. Related to the off-critical model we define a real and local lagrangian provided some reality conditions are imposed on the fields of the model. This real action model is expected to describe the soliton sector of the original model, and turns out to be the master action from which we uncover the weak-strong phases described by (generalized) massive Thirring and sine-Gordon type models, respectively. The case of any (untwisted) affine Lie algebra furnished with the principal gradation is studied in some detail. The example of s^l(n) (n = 2, 3) is presented explicitly. © SISSA/ISAS 2003.
Resumo:
We perform a systematic numerical study, based on the time-dependent Gross-Pitaevskii equation, of jet formation in collapsing and exploding Bose-Einstein condensates as in the experiment by Donley et al (2001 Nature 412 295). In the actual experiment, via a Feshbach resonance, the scattering length of atomic interaction was suddenly changed from positive to negative on a pre-formed condensate. Consequently, the condensate collapsed and ejected atoms via explosion. On disruption of the collapse by suddenly changing the scattering length to zero, a radial jet of atoms was formed in the experiment. We present a satisfactory account of jet formation under the experimental conditions and also make predictions beyond experimental conditions which can be verified in future experiments.
Resumo:
Non-abelian gauge theories are super-renormalizable in 2+1 dimensions and suffer from infrared divergences. These divergences can be avoided by adding a Chern-Simons term, i.e., building a Topologically Massive Theory. In this sense, we are interested in the study of the Topologically Massive Yang-Mills theory on the Null-Plane. Since this is a gauge theory, we need to analyze its constraint structure which is done with the Hamilton-Jacobi formalism. We are able to find the complete set of Hamiltonian densities, and build the Generalized Brackets of the theory. With the GB we obtain a set of involutive Hamiltonian densities, generators of the evolution of the system. © 2010 American Institute of Physics.
Resumo:
A search for physics beyond the standard model involving events with one or more photons, jets, and missing transverse energy has been performed by the CMS experiment. The data sample corresponds to an integrated luminosity of 4.93 fb-1 of proton-proton collisions at √s =7 TeV, produced at the Large Hadron Collider. No excess of events with large missing transverse energy is observed beyond expectations from standard model processes, and upper limits on the signal production cross sections for new physics processes are set at the 95% confidence level. The results of this search are interpreted in the context of three models of new physics: a general model of gauge-mediated supersymmetry breaking, Simplified Models, and a theory involving universal extra dimensions. In the absence of evidence for new physics, exclusion regions are derived in the parameter spaces of the respective models.[Figure not available: see fulltext.] © 2013 CERN for the benefit of the CMS collaboration.
Resumo:
The hexagonal nanomembranes of the group III-nitrides are a subject of interest due to their novel technological applications. In this paper, we investigate the strain- and electric field-induced modulation of their band gaps in the framework of density functional theory. For AlN, the field-dependent modulation of the bandgap is found to be significant whereas the strain-induced semiconductor-metal transition is predicted for GaN. A relatively flat conduction band in AlN and GaN nanomembranes leads to an enhancement of their electronic mobility compared to that of their bulk counterparts. © 2013 IOP Publishing Ltd.
Resumo:
We analyze the scalar radiation emitted by a source in uniform circular motion in Minkowski spacetime interacting with a massive Klein-Gordon field. We assume the source rotating around a central object due to a Newtonian force. By considering the canonical quantization of this field, we use perturbation theory to compute the radiation emitted at the tree level. Regarding the initial state of the field as being the Minkowski vacuum, we compute the emission amplitude for the rotating source, assuming it as being minimally coupled to the massive Klein-Gordon field. We then compute the power emitted by the swirling source as a function of its angular velocity, as measured by asymptotic static observers.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Using 2-body trees on a flat space background, it is shown that the actions A[g, φ] = (Latin small letter esh) d4x√-g [(R/2K) + (1/2)(gμν ∂μφ∂νφ + λRφ2)] and Ā[ḡ, φ̄] = (Latin small letter esh) d4x√ - ḡ [(R̄/2k) + (1/2) ḡμν∂μφ̄∂ νφ] describe the same theory at the tree-level in this case. We also demonstrate the quantum equivalence (at one-loop) of the barred and unbarred systems for λ == -1/6 (conformal coupling).