978 resultados para Feature Film


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel film bulk acoustic resonator (FBAR) with two resonant frequencies which have opposite reactions to temperature changes has been designed. The two resonant modes respond differently to changes in temperature and pressure, with the frequency shift being linearly correlated with temperature and pressure changes. By utilizing the FBAR's sealed back trench as a cavity, an on-chip single FBAR sensor suitable for measuring pressure and temperature simultaneously is proposed and demonstrated. The experimental results show that the pressure coefficient of frequency for the lower frequency peak of the FBAR sensors is approximately -17.4 ppm kPa-1, while that for the second peak is approximately -6.1 ppm kPa-1, both of them being much more sensitive than other existing pressure sensors. This dual mode on-chip pressure sensor is simple in structure and operation, can be fabricated at very low cost, and yet requires no specific package, therefore has great potential for applications. © 2012 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restricted deposits of fossil fuels and ecological problems created by their extensive use require a transition to renewable energy resources and clean fuel free from emissions of CO2. This fuel is likely to be liquid hydrogen. An important feature of liquid hydrogen is that it allows wide use of superconductivity. Superconductors provide compactness, high efficiency, savings in energy and a range of new applications not possible with other materials. The benefits of superconductivity justify use of low temperatures and facilitate development of fossil-free energy economy. The widespread use of superconductors requires a simple and reliable technique to monitor their properties. Magneto-optical imaging (MOI) is currently the only direct technique allowing visualization of the superconducting properties of materials. We report the application of this technique to key superconducting materials suitable for the hydrogen economy: MgB2 and high temperature superconductors (HTS) in bulk and thin-film form. The study shows that the MOI technique is well suited to the study of these materials. It demonstrates the advantage of HTS at liquid hydrogen temperatures and emphasizes the benefits of MgB2, in particular. © 2012 Springer Science+Business Media New York.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called "crowding". Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, "compulsory averaging", and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-material interactions are crucial for cell adhesion and proliferation on biomaterial surfaces. Immobilization of biomolecules leads to the formation of biomimetic substrates, improving cell response. We introduced RGD (Arg-Gly-Asp) sequences on poly-ε-caprolactone (PCL) film surfaces using thiol chemistry to enhance Schwann cell (SC) response. XPS elemental analysis indicated an estimate of 2-3% peptide functionalization on the PCL surface, comparable with carbodiimide chemistry. Contact angle was not remarkably reduced; hence, cell response was only affected by chemical cues on the film surface. Adhesion and proliferation of Schwann cells were enhanced after PCL modification. Particularly, RGD immobilization increased cell attachment up to 40% after 6 h of culture. It was demonstrated that SC morphology changed from round to very elongated shape when surface modification was carried out, with an increase in the length of cellular processes up to 50% after 5 days of culture. Finally RGD immobilization triggered the formation of focal adhesion related to higher cell spreading. In summary, this study provides a method for immobilization of biomolecules on PCL films to be used in peripheral nerve repair, as demonstrated by the enhanced response of Schwann cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A circular-type magnetic flux pump (CTMFP) device was built to study the flux dynamics on a 2-inch-diameter YBCO thin film. This CTMFP is composed of two CTMFP coils, with each CTMFP coil containing concentric three-phase windings and a dc winding. We connected the three-phase windings to the output of a commercial inverter. By changing the output frequency of the inverter, the sweeping speed of the circular-shaped travelling magnetic wave can be changed. The connection of the phase coils follows the forward consequence, so that the circular-shaped travelling magnetic wave travels inward to the center. The output frequency f was changed from f = 0.01 to 1000.0 Hz. The YBCO sample was sandwiched between the two CTMFP coils to experience the circular-shaped travelling magnetic wave. It was found that the increase of the flux density in the center of the film is independent of the sweeping frequency. In high frequency f = 1000.0Hz, even if the waveform had changed a lot, the increment is still the same as in low frequencies. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterojunction is an important structure for the development of photovoltaic solar cells. In contrast to homojunction structures, heterojunction solar cells have internal crystalline interfaces, which will reflect part of the incident light, and this has not been considered carefully before though many heterostructure solar cells have been commercialized. This paper discusses the internal reflection for various material systems used for the development of heterostructure-based solar cells. It has been found that the most common heterostructure solar cells have internal reflection less than 2%, while some potential heterojunction solar cells such as ITO/GaAs, ITO/InP, Si/Ge, polymer/semiconductors and oxide semiconductors may have internal reflection as high as 20%. Also it is worse to have a window layer with a lower refractive index than the absorption layer for solar cells. Ignoring this strong internal reflection will lead to severe deterioration and reduction of conversion efficiency; therefore measures have to be taken to minimize or prevent this internal reflection. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brain extracts useful features from a maelstrom of sensory information, and a fundamental goal of theoretical neuroscience is to work out how it does so. One proposed feature extraction strategy is motivated by the observation that the meaning of sensory data, such as the identity of a moving visual object, is often more persistent than the activation of any single sensory receptor. This notion is embodied in the slow feature analysis (SFA) algorithm, which uses “slowness” as an heuristic by which to extract semantic information from multi-dimensional time-series. Here, we develop a probabilistic interpretation of this algorithm showing that inference and learning in the limiting case of a suitable probabilistic model yield exactly the results of SFA. Similar equivalences have proved useful in interpreting and extending comparable algorithms such as independent component analysis. For SFA, we use the equivalent probabilistic model as a conceptual spring-board, with which to motivate several novel extensions to the algorithm.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic thin-film transistors based on polycrystalline copper phthalocyanine (CuPc) were fabricated by using poly(vinyl alcohol) as gate dielectric. After treatment of the gate dielectric using an octadecyltrichlorosilane self-assembled monolayer, a mobility of up to 0.11 cm2/V∈s was achieved, which is comparable to that of single-crystal CuPc devices (0.1-1 cm2/V∈s). The surface morphology was analyzed and the possible reasons for the enhanced mobility are discussed. © 2009 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We fabricate a saturable absorber mirror by coating a graphenefilm on an output coupler mirror. This is then used to obtain Q-switched mode-locking from a diode-pumped linear cavity channel waveguide laser inscribed in Ytterbium-doped Bismuthate Glass. The laser produces 1.06 ps pulses at ∼1039 nm, with a 1.5 GHz repetition rate, 48% slope efficiency and 202 mW average output power. This performance is due to the combination of the graphene saturable absorber and the high quality optical waveguides in the laser glass. © 2013 Optical Society of America.