989 resultados para Fast Rayleigh Fading
Resumo:
Band excitation piezoresponse force microscopy enables local investigation of the nonlinear piezoelectric behavior of ferroelectric thin films. However, the presence of additional nonlinearity associated with the dynamic resonant response of the tip-surface junction can complicate the study of a material's nonlinearity. Here, the relative importance of the two nonlinearity sources was examined as a function of the excitation function. It was found that in order to minimize the effects of nonlinear tip-surface interactions but achieve good signal to noise level, an optimal excitation function must be used. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3593138]
Resumo:
PURPOSE: To evaluate the sensitivity and specificity of the screening mode of the Humphrey-Welch Allyn frequency-doubling technology (FDT), Octopus tendency-oriented perimetry (TOP), and the Humphrey Swedish Interactive Threshold Algorithm (SITA)-fast (HSF) in patients with glaucoma. DESIGN: A comparative consecutive case series. METHODS: This was a prospective study which took place in the glaucoma unit of an academic department of ophthalmology. One eye of 70 consecutive glaucoma patients and 28 age-matched normal subjects was studied. Eyes were examined with the program C-20 of FDT, G1-TOP, and 24-2 HSF in one visit and in random order. The gold standard for glaucoma was presence of a typical glaucomatous optic disk appearance on stereoscopic examination, which was judged by a glaucoma expert. The sensitivity and specificity, positive and negative predictive value, and receiver operating characteristic (ROC) curves of two algorithms for the FDT screening test, two algorithms for TOP, and three algorithms for HSF, as defined before the start of this study, were evaluated. The time required for each test was also analyzed. RESULTS: Values for area under the ROC curve ranged from 82.5%-93.9%. The largest area (93.9%) under the ROC curve was obtained with the FDT criteria, defining abnormality as presence of at least one abnormal location. Mean test time was 1.08 ± 0.28 minutes, 2.31 ± 0.28 minutes, and 4.14 ± 0.57 minutes for the FDT, TOP, and HSF, respectively. The difference in testing time was statistically significant (P <.0001). CONCLUSIONS: The C-20 FDT, G1-TOP, and 24-2 HSF appear to be useful tools to diagnose glaucoma. The test C-20 FDT and G1-TOP take approximately 1/4 and 1/2 of the time taken by 24 to 2 HSF. © 2002 by Elsevier Science Inc. All rights reserved.
Resumo:
Purpose: To compare the diagnostic abilities of the standard bracketing strategy (BR) and a fast strategy, the tendency-oriented perimetry (TOP). Methods: Seventy-seven controls and 91 eyes from patients with glaucoma were analyzed with the strategies TOP and BR. Sensitivity (Se), specificity (Sp), the area under the receiver operating characteristic (ROC) curve (AC) and the optimum cutoff value (CO) were calculated for the visual field indices mean defect (MD), the square root of the loss variance (sLV) and the number of pathological points (NPP). Results: In the glaucoma group, the mean MD value using TOP and BR was 7.5 and 8.3 dB, respectively. The mean sLV value using TOP and BR was 5.0 and 5.3 dB, respectively. Indices provided by TOP had higher ROC values than the ones provided by BR. Using TOP, the index with the best diagnostic ability was sLV (Sp = 94.8, Se = 90.1, AC = 0.966, CO = 2.5 dB), followed by NPP and MD. Using BR, the best results were obtained for MD (Sp = 92.2, Se = 81.3, AC = 0.900, CO = 2.5 dB) followed by sLV and NPP. Conclusions: A fast strategy, TOP, had superior diagnostic ability than the standard BR. Although TOP provided lower LV values than BR, the diagnostic ability of this index was higher than that of the conventional strategy. Copyright © 2005 S. Karger AG.
Resumo:
Purpose: To compare two fast threshold strategies of visual field assessment; SITA Fast (HSF) and Tendency Orientated Perimetry (TOP), in detecting visual field loss in patients with glaucoma. Methods: Seventy-six glaucoma, ocular hypertensive and normal patients had HSF and TOP performed in random order. Quantitative comparisons for the global visual field indices - mean deviation and defect (MD) for HSF and TOP, and pattern standard deviation (PSD) for HSF and loss variance (LV) for TOP - were made using correlation coefficients. Humphrey global parameters were converted to Octopus equivalents, and method comparison analysis was used to determine agreement between the two strategies. Test duration times were compared using t-test. Sensitivity and specificity for these two algorithms were determined according to predetermined criteria. Results: High correlation coefficient values were obtained for MD measurements between HSF and TOP (r=-0.89, P
Resumo:
The H-2-assisted hydrocarbon selective catalytic reduction (HC-SCR) of NO, was investigated using fast transient kinetic analysis coupled with isotopically labelled (NO)-N-15. This allowed monitoring of the evolution of products and reactants during switches of H-2 in and out of the SCR reaction mix. The results obtained with a time resolution of less than 1 s showed that the effect on the reaction of the removal or addition of H-2 was essentially instantaneous. This is consistent with the view that H-2 has a direct chemical effect on the reaction mechanism rather than a secondary one through the formation of "active" Ag clusters. The effect of H-2 partial pressure was investigated at 245 degrees C, it was found that increasing partial pressure of H-2 resulted in increasing conversion of NO and octane. It was also found that the addition of H-2 at 245 degrees C had different effects on the product distribution depending on its partial pressure. The change of the nitrogen balance over time during switches in and out of hydrogen showed that significant quantities of N-containing species were stored when hydrogen was introduced to the system. The positive nitrogen balance on removal of H-2 from the gas phase showed that these stored species continued to react after removal of hydrogen to form N-2. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
A proof-of-concept study was reported on analysis of antigen–antibody recognition based on resonant Rayleigh scattering response of single Au nanoparticles in an imaging chamber. As benefited by a traditional dark-field microscope and a spectrograph, individual Au nanoparticles (30 nm) were observed with high signal-to-noise ratio and they were effectively utilized to monitor changes in refractive index induced by specific binding of the adsorbates. Using PSA antigen as a model, a LSPR ?max shift of about 2.85 nm was recorded for a molecular binding corresponding to 0.1 pg ml-1 of the protein biomarker. This result successfully demonstrates a non-labeling detection system for proteins as well as thousands of different chemical or biological species, and it possesses a great potential as a sensitive, on-chip and multiplexing detection.
Resumo:
A proof-of-concept study was reported on analysis of antigen-antibody recognition based on resonant Rayleigh scattering response of single Au nanoparticles on a microimaging chamber. As benefited by a traditional dark-field microscope and a spectrograph, tiny 30 nm Au nanoparticles were effectively used as nanosensors to monitor changes in refractive index induced by every single binding of the adsorbates. The individual Au nanoparticles were observed with very high signal-to-noise ratio, and a LSPR ?max shift of about 2.5 nm accounting for the detection of PSA antigen with concentration as low as 0.1 pg ml-1 was recorded. This resulted in the successful demonstration of a non-labelling detection system for proteins as well as thousands of different chemical or biological species with possibility of miniaturization and multiplexing scheme.
Resumo:
We propose the inverse Gaussian distribution, as a less complex alternative to the classical log-normal model, to describe turbulence-induced fading in free-space optical (FSO) systems operating in weak turbulence conditions and/or in the presence of aperture averaging effects. By conducting goodness of fit tests, we define the range of values of the scintillation index for various multiple-input multiple-output (MIMO) FSO configurations, where the two distributions approximate each other with a certain significance level. Furthermore, the bit error rate performance of two typical MIMO FSO systems is investigated over the new turbulence model; an intensity-modulation/direct detection MIMO FSO system with Q-ary pulse position modulation that employs repetition coding at the transmitter and equal gain combining at the receiver, and a heterodyne MIMO FSO system with differential phase-shift keying and maximal ratio combining at the receiver. Finally, numerical results are presented that validate the theoretical analysis and provide useful insights into the implications of the model parameters on the overall system performance. © 2011 IEEE.
Resumo:
This paper elaborates on the ergodic capacity of fixed-gain amplify-and-forward (AF) dual-hop systems, which have recently attracted considerable research and industry interest. In particular, two novel capacity bounds that allow for fast and efficient computation and apply for nonidentically distributed hops are derived. More importantly, they are generic since they apply to a wide range of popular fading channel models. Specifically, the proposed upper bound applies to Nakagami-m, Weibull, and generalized-K fading channels, whereas the proposed lower bound is more general and applies to Rician fading channels. Moreover, it is explicitly demonstrated that the proposed lower and upper bounds become asymptotically exact in the high signal-to-noise ratio (SNR) regime. Based on our analytical expressions and numerical results, we gain valuable insights into the impact of model parameters on the capacity of fixed-gain AF dual-hop relaying systems. © 2011 IEEE.
Resumo:
Recently, two fast selective encryption methods for context-adaptive variable length coding and context-adaptive binary arithmetic coding in H.264/AVC were proposed by Shahid et al. In this paper, it was demonstrated that these two methods are not as efficient as only encrypting the sign bits of nonzero coefficients. Experimental results showed that without encrypting the sign bits of nonzero coefficients, these two methods can not provide a perceptual scrambling effect. If a much stronger scrambling effect is required, intra prediction modes, and the sign bits of motion vectors can be encrypted together with the sign bits of nonzero coefficients. For practical applications, the required encryption scheme should be customized according to a user's specified requirement on the perceptual scrambling effect and the computational cost. Thus, a tunable encryption scheme combining these three methods is proposed for H.264/AVC. To simplify its implementation and reduce the computational cost, a simple control mechanism is proposed to adjust the control factors. Experimental results show that this scheme can provide different scrambling levels by adjusting three control factors with no or very little impact on the compression performance. The proposed scheme can run in real-time and its computational cost is minimal. The security of the proposed scheme is also discussed. It is secure against the replacement attack when all three control factors are set to one.