986 resultados para FUNCTIONALLY GRADED STRUCTURES
Resumo:
In everyday economic interactions, it is not clear whether sequential choices are visible or not to other participants: agents might be deluded about opponents'capacity to acquire,interpret or keep track of data, or might simply unexpectedly forget what they previously observed (but not chose). Following this idea, this paper drops the assumption that the information structure of extensive-form games is commonly known; that is, it introduces uncertainty into players' capacity to observe each others' past choices. Using this approach, our main result provides the following epistemic characterisation: if players (i) are rational,(ii) have strong belief in both opponents' rationality and opponents' capacity to observe others' choices, and (iii) have common belief in both opponents' future rationality and op-ponents' future capacity to observe others' choices, then the backward induction outcome obtains. Consequently, we do not require perfect information, and players observing each others' choices is often irrelevant from a strategic point of view. The analysis extends {from generic games with perfect information to games with not necessarily perfect information{the work by Battigalli and Siniscalchi (2002) and Perea (2014), who provide different sufficient epistemic conditions for the backward induction outcome.
Resumo:
We consider adhesive contact between a rigid sphere of radius R and a graded elastic half-space with Young's modulus varying with depth according to a power law E = E-0(z/c(0))(k) (0 < k < 1) while Poisson's ratio v remaining a constant. Closed-form analytical solutions are established for the critical force, the critical radius of contact area and the critical interfacial stress at pull-off. We highlight that the pull-off force has a simple solution of P-cr= -(k+3)pi R Delta gamma/2 where Delta gamma is the work of adhesion and make further discussions with respect to three interesting limits: the classical JKR solution when k = 0, the Gibson solid when k --> 1 and v = 0.5, and the strength limit in which the interfacial stress reaches the theoretical strength of adhesion at pull-off. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In the absence of external loading, surface tension will induce a residual stress field in the bulk of nano structures. However, in the prediction of mechanical properties of nano structures, the elastic response of the bulk is usually described by classical Hooke’s law, in which the aforementioned residual stress was neglected in the existing literatures. The present paper investigates the influences of surface tension and the residual stress in the bulk induced by the surface tension on the elastic properties of nano structures. We firstly present the surface elasticity in the Lagrangian and the Eulerian descriptions and point out that even in the case of infinitesimal deformations the reference and the current configurations should be discriminated; otherwise the out-plane terms of surface displacement gradient, associated with the surface tension, may sometimes be overlooked in the Eulerian descriptions, particularly for curved and rotated surfaces. Then, the residual stress in the bulk is studied through the non-classical boundary conditions and used to construct the linear elastic constitutive relations for the bulk material. Finally, these relations are adopted to analyze the size-dependent properties of pure bending of Al nanowires. The present results show that surface tension will considerably affect the effective Young’s modulus of Al nanowires, which decrease with either the decrease of nanowires thickness or the increase of the aspect ratio.