986 resultados para FORCE MICROSCOPY


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The results of two-dimensional micromagnetic modeling of magnetization patterns in Permalloy ellipses under the influence of rotating constant-amplitude magnetic fields are discussed. Ellipses of two different lateral sizes have been studied, 0.5m x 1.5m and 1m x 3m. The amplitude of the rotating magnetic field was varied between simulations with the condition that it must be large enough to saturate or nearly saturate the ellipse with the field applied along the long axis of the ellipse. For the smaller ellipse size it is found that the magnetization pattern forms an S state and the direction of the net magnetization lags behind the direction of the applied field. At a critical angle of the rotating magnetic field the direction of the magnetization switches by a large angle to a new S state. Both the critical angle and the angle interval of the switch depend on field amplitude. For this new state, it is instead the applied field direction that lags behind the magnetization direction. The transient magnetization patterns correspond to multi-domain patterns including two vortices, but this state never exists for the equilibrated magnetization patterns. The behavior of the larger ellipse in rotating field is different. With the field applied along the long-axis of the ellipse, the magnetization of the ellipse is nearly saturated with a vortex close to each apex of the ellipse. As the field is rotated, this magnetization pattern remains and the net-magnetization direction lags behind the direction of the field until for a certain angle of the applied field an equilibrium multi-domain state is created. Comparisons are made with corresponding experimental results obtained by performing in-field magnetic force microscopy on Permalloy ellipses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The domain configuration of micron-sized permalloy ellipses was studied under the influence of an in-plane rotating magnetic field using magnetic force microscopy. The field amplitude was chosen such that when the field is applied parallel to the long axis of the ellipses they are saturated, but when the field is perpendicular to the long axis they exhibit multi-domain states. The rotation angle for nucleation and annihilation of domains was determined for different magnitudes of the applied magnetic field and for two different lateral sizes of ellipses, 6 Am x 2 Am and 3 Am x 1 Am. It was found that both nucleation and annihilation occur over a range of angles for both lateral sizes of ellipses. Saturated states are stable for a wider range of angles for larger values of the applied field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of competing magneto-crystalline and shape anisotropies on magnetization reversal were studied in situ in arrays of sub-micron Fe/Co ellipses of compositions Fe2/Co6 and Fe8/Co3 with magnetic force microscopy (MFM). A simple model assigning magnetization values to the different types of domain structures observed in the MFM images was used to estimate the field dependence of the total magnetization of a sample. The agreement with macroscopic magnetization measurements is discussed. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiferroicity can be induced in strontium titanate by applying biaxial strain. Using optical second harmonic generation, we report a transition from 4/mmm to the ferroelectric mm2 phase, followed by a transition to a ferroelastic-ferroelectric mm2 phase in a strontium titanate thin film. Piezoelectric force microscopy is used to study ferroelectric domain switching. Second harmonic generation, combined with phase-field modeling, is used to reveal the mechanism of coupled ferroelectric-ferroelastic domain wall motion. These studies have relevance to multiferroics with coupled polar and axial phenomena.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the magnetic and electrical characteristics of polycrystalline FeTiO3 synthesized at high pressure that is isostructural with acentric LiNbO3 (LBO). Piezoresponse force microscopy, optical second harmonic generation, and magnetometry demonstrate ferroelectricity at and below room temperature and weak ferromagnetism below ~120??K. These results validate symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and weak ferromagnetism in a series of transition metal titanates crystallizing in the LBO structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Demonstration of a tunable conductivity of the LaAlO3/SrTiO3 interfaces drew significant attention to the development of oxide electronic structures where electronic confinement can be reduced to the nanometer range. While the mechanisms for the conductivity modulation are quite different and include metal insulator phase transition and surface charge writing, generally it is implied that this effect is a result of electrical modification of the LaAlO3 surface (either due to electrochemical dissociation of surface adsorbates or free charge deposition) leading to the change in the two-dimensional electron. gas (2DEG) density at the LaAlO3/SrTiO3 (LAO/STO) interface. In this paper, using piezoresponse force microscopy we demonstrate a switchable electromechanical response of the LAO overlayer, which we attribute to the motion of oxygen vacancies through the LAO layer thickness. These electrically induced reversible changes in bulk stoichiometry of the LAO layer are a signature of a possible additional mechanism for nanoscale oxide 2DEG control on LAO/STO interfaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated the nanoscale switching properties of strain-engineered BiFeO(3) thin films deposited on LaAlO(3) substrates using a combination of scanning probe techniques. Polarized Raman spectral analysis indicates that the nearly tetragonal films have monoclinic (Cc) rather than P4mm tetragonal symmetry. Through local switching-spectroscopy measurements and piezoresponse force microscopy, we provide clear evidence of ferroelectric switching of the tetragonal phase, but the polarization direction, and therefore its switching, deviates strongly from the expected (001) tetragonal axis. We also demonstrate a large and reversible, electrically driven structural phase transition from the tetragonal to the rhombohedral polymorph in this material, which is promising for a plethora of applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate an approach for probing nonlinear electromechanical responses in BiFeO(3) thin film nanocapacitors using half-harmonic band excitation piezoresponse force microscopy (PFM). Nonlinear PFM images of nanocapacitor arrays show clearly visible clusters of capacitors associated with variations of local leakage current through the BiFeO(3) film. Strain spectroscopy measurements and finite element modeling point to significance of the Joule heating and show that the thermal effects caused by the Joule heating can provide nontrivial contributions to the nonlinear electromechanical responses in ferroic nanostructures. This approach can be further extended to unambiguous mapping of electrostatic signal contributions to PFM and related techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zinc oxide is synthesised at low temperature (80A degrees C) in nanosheet geometry using a substrate-free, single-step, wet-chemical method and is found to act as a blue-white fluorophore. Investigation by atomic force microscopy, electron microscopy, and X-ray diffraction confirms zinc oxide material of nanosheet morphology where the individual nanosheets are polycrystalline in nature with the crystalline structure being of wurtzite character. Raman spectroscopy indicates the presence of various defects, while photoluminescence measurements show intense green (centre wavelength approximately 515 nm) blue (approximately 450 nm), and less dominant red (approximately 640 nm) emissions due to a variety of vacancy and interstitial defects, mostly associated with surfaces or grain boundaries. The resulting colour coordinate on the CIE-1931 standard is (0.23, 0.33), demonstrating potential for use as a blue-white fluorescent coating in conjunction with ultraviolet emitting LEDs. Although the defects are often treated as draw-backs of ZnO, here we demonstrate useful broadband visible fluorescence properties in as-prepared ZnO. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A finite element model of a single cell was created and used to investigate the effects of ageing on biophysical stimuli generated within a cell. Major cellular components were incorporated in the model: the membrane, cytoplasm, nucleus, microtubules, actin filaments, intermediate filaments, nuclear lamina, and chromatin. The model used multiple sets of tensegrity structures. Viscoelastic properties were assigned to the continuum components. To corroborate the model, a simulation of Atomic Force Microscopy (AFM) indentation was performed and results showed a force/indentation simulation with the range of experimental results.

Ageing was simulated by both increasing membrane stiffness (thereby modelling membrane peroxidation with age) and decreasing density of cytoskeletal elements (thereby modelling reduced actin density with age). Comparing normal and aged cells under indentation predicts that aged cells have a lower membrane area subjected to high strain compared to young cells, but the difference, surprisingly, is very small and would not be measurable experimentally. Ageing is predicted to have more significant effect on strain deep in the nucleus. These results show that computation of biophysical stimuli within cells are achievable with single-cell computational models whose force/displacement behaviour is within experimentally observed ranges. the models suggest only small, though possibly physiologically-significant, differences in internal biophysical stimuli between normal and aged cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Freestanding BaTiO3 nanodots exhibit domain structures characterized by distinct quadrants of ferroelastic 90 domains in transmission electron microscopy (TEM) observations. These differ significantly from flux-closure domain patterns in the same systems imaged by piezoresponse force microscopy. Based upon a series of phase field simulations of BaTiO3 nanodots, we suggest that the TEM patterns result from a radial electric field arising from electron beam charging of the nanodot. For sufficiently large charging, this converts flux-closure domain patterns to quadrant patterns with radial net polarizations. Not only does this explain the puzzling patterns that have been observed in TEM studies of ferroelectric nanodots, but also suggests how to manipulate ferroelectric domain patterns via electron beams.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thin single-crystal lamellae cut from Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 ceramic samples have been integrated into simple coplanar capacitor devices. The influence of applied electric and magnetic fields on ferroelectric domain configurations has been mapped, using piezoresponse force microscopy. The extent to which magnetic fields alter the ferroelectric domains was found to be strongly history dependent: after switching had been induced by applying electric fields, the susceptibility of the domains to change under a magnetic field (the effective magnetoelectric coupling parameter) was large. Such large, magnetic field-induced changes resulted in a remanent domain state very similar to the remanent state induced by an electric field. Subsequent magnetic field reversal induced more modest ferroelectric switching.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epitaxial tetragonal 425 and 611 nm thick Pb(ZrTi)O (PZT) films are deposited by pulsed laser deposition on SrRuO-coated (100) SrTiO 24° tilt angle bicrystal substrates to create a single PZT grain boundary with a well-defined orientation. On either side of the bicrystal boundary, the films show square hysteresis loops and have dielectric permittivities of 456 and 576, with loss tangents of 0.010 and 0.015, respectively. Using piezoresponse force microscopy (PFM), a decrease in the nonlinear piezoelectric response is observed in the vicinity (720-820 nm) of the grain boundary. This region represents the width over which the extrinsic contributions to the piezoelectric response (e.g., those associated with the domain density/configuration and/or the domain wall mobility) are influenced by the presence of the grain boundary. Transmission electron microscope (TEM) images collected near and far from the grain boundary indicate a strong preference for (101)/(1-01) type domain walls at the grain boundary, whereas (011)/(01-1) and (101)/(1-01) are observed away from this region. It is proposed that the elastic strain field at the grain boundary interacts with the ferro-electric/elastic domain structure, stabilizing (101)/(1-01) rather than (011)/(01-1) type domain walls, which inhibits domain wall motion under applied field and decreases non-linearity. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atomic force microscopy (AFM), conductive AFM and electrochemical strain microscopy were used to study the topography change at the defect surface of SrTiO3:N, breakdown in the electrical conduction of the tip/sample/electrode system and ionic motion. The IV curves show resistance switching behavior in a voltage range ±6 V < U <± 10 V and a current of maximum ±10 nA. A series of sweeping IV curves resulted in an increase in ionically polarized states (surface charging), electrochemical volume (surface deformations) and sequential formations of stable surface protrusions. The surface deformations are reversible (U <± 5 V) without IVpinched hysteresis and remained stable during the resistance switching (U >± 6 V), revealing the additional necessity (albeit insufficient due to 50% yield of working cells) of surface protrusion formation for resistance switching memory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bias dependent mechanisms of irreversible cathodic and anodic processes on a pure CeO2 film are studied using modified atomic force microscopy (AFM). For a moderate positive bias applied to the AFM tip an irreversible electrochemical reduction reaction is found, associated with significant local volume expansion. By changing the experimental conditions we are able to deduce the possible role of water in this process. Simultaneous detection of tip height and current allows the onset of conductivity and the electrochemical charge transfer process to be separated, further elucidating the reaction mechanism. The standard anodic/cathodic behavior is recovered in the high bias regime, where a sizable transport current flows between the tip and the film. These studies give insight into the mechanisms of the tip-induced electrochemical reactions as mediated by electronic currents, and into the role of water in these processes, as well as providing a different approach for electrochemical nano-writing.