929 resultados para FLUORESCENT-PROBE
Resumo:
The red fluorescent protein Rtms5H146S displays a transition from blue (absorbance λmax 590 nm) to yellow (absorbance λmax not, vert, similar453 nm) upon titration to low pH. The pKa of the reaction depends on the concentration of halide, offering promise for new expressible halide sensors. The protonation state involved in the low pH form of the chromophore remains, however, ambiguous. We report calculated excitation energies of different protonation states of an RFP chromophore model. These suggest that the relevant titration site is the phenoxy moiety of the chromophore, and the relevant base and conjugate acid are anionic and neutral chromophore species, respectively.
Resumo:
The effects of free ammonia (FA; NH3) and free nitrous acid (FNA; HNO2) concentrations on the metabolisms of an enriched ammonia oxidizing bacteria (AOB) culture were investigated using a method allowing the decoupling of growth and energy generation processes. A lab-scale sequencing batch reactor (SBR) was operated for the enrichment of an AOB culture. Fluorescent in-situ hybridization (FISH) analysis showed that 82% of the bacterial population in the SBR bound to the NEU probe specifically designed for Nitrosomonas europaea. Batch tests were carried out to measure the oxygen and ammonium consumption rates by the culture at various FA and FNA levels, in the presence or absence of inorganic carbon (CO2, HCO3, and CO32-). It was revealed that FA of up to 16.0 mgNH(3)-N (.) L-1, which was the highest concentration used in this study, did not have any inhibitory effect on either the catabolic or anabolic processes of the Nitrosomonas culture. In contrast, FNA inhibited both the growth and energy production capabilities of the Nitrosomonas culture. The inhibition on growth initiated at approximately 0.10 mgHNO(2)-(NL-1)-L-., and the data suggested that the biosynthesis was completely stopped at an FNA concentration of 0.40 mgHNO(2)-N (.) L-1. The inhibition on energy generation initiated at a slightly lower level but the Nitrosomonas culture was still oxidizing ammonia at half of the maximum rate at an FNA concentration of 0.50-0.63 mgHNO(2)-N (.) L-1. The affinity constant of the Nitrosomonas culture with respect to ammonia was determined to be 0.36 mgNH3-N (.) L-1, independent of the presence or absence of inorganic carbon. (c) 2006 Wiley Periodicals, Inc.
Resumo:
The ‘leading coordinate’ approach to computing an approximate reaction pathway, with subsequent determination of the true minimum energy profile, is applied to a two-proton chain transfer model based on the chromophore and its surrounding moieties within the green fluorescent protein (GFP). Using an ab initio quantum chemical method, a number of different relaxed energy profiles are found for several plausible guesses at leading coordinates. The results obtained for different trial leading coordinates are rationalized through the calculation of a two-dimensional relaxed potential energy surface (PES) for the system. Analysis of the 2-D relaxed PES reveals that two of the trial pathways are entirely spurious, while two others contain useful information and can be used to furnish starting points for successful saddle-point searches. Implications for selection of trial leading coordinates in this class of proton chain transfer reactions are discussed, and a simple diagnostic function is proposed for revealing whether or not a relaxed pathway based on a trial leading coordinate is likely to furnish useful information.
Resumo:
We explore several models for the ground-state proton chain transfer pathway between the green fluorescent protein chromophore and its surrounding protein matrix, with a view to elucidating mechanistic aspects of this process. We have computed quantum chemically the minimum energy pathways (MEPs) in the ground electronic state for one-, two-, and three-proton models of the chain transfer. There are no stable intermediates for our models, indicating that the proton chain transfer is likely to be a single, concerted kinetic step. However, despite the concerted nature of the overall energy profile, a more detailed analysis of the MEPs reveals clear evidence of sequential movement of protons in the chain. The ground-state proton chain transfer does not appear to be driven by the movement of the phenolic proton off the chromophore onto the neutral water bridge. Rather, this proton is the last of the three protons in the chain to move. We find that the first proton movement is from the bridging Ser205 moiety to the accepting Glu222 group. This is followed by the second proton moving from the bridging water to the Ser205for our model this is where the barrier occurs. The phenolic proton on the chromophore is hence the last in the chain to move, transferring to a bridging “water” that already has substantial negative charge.
Resumo:
We have developed a sensitive, non-radioactive method to assess the interaction of transcription factors/DNA-binding proteins with DNA. We have modified the traditional radiolabeled DNA gel mobility shift assay to incorporate a DNA probe end-labeled with a Texas-red fluorophore and a DNA-binding protein tagged with the green fluorescent protein to monitor precisely DNA-protein complexation by native gel electrophoresis. We have applied this method to the DNA-binding proteins telomere release factor-1 and the sex-determining region-Y, demonstrating that the method is sensitive (able to detect 100 fmol of fluorescently labeled DNA), permits direct visualization of both the DNA probe and the DNA-binding protein, and enables quantitative analysis of DNA and protein complexation, and thereby an estimation of the stoichiometry of protein-DNA binding.
Resumo:
The green fluorescent protein (avGFP), its variants, and the closely related GFP-like proteins are characterized structurally by a cyclic tri-peptide chromophore located centrally within a conserved beta-can fold. Traditionally, these GFP family members have been isolated from the Cnidaria although recently, distantly related GFP-like proteins from the Bilateria, a sister group of the Cnidaria have been described, although no representative structure from this phylum has been reported to date. We have determined to 2.1 angstrom resolution the crystal structure of copGFP, a representative GFP-like protein from a copepod, a member of the Bilateria. The structure of copGFP revealed that, despite sharing only 19% sequence identity with GFP, the tri-peptide chromophore (Gly57-Tyr58-Gly59) of copGFP adopted a cis coplanar conformation within the conserved beta-can fold. However, the immediate environment surrounding the chromophore of copGFP was markedly atypical when compared to other members of the GFP-superfamily, with a large network of bulky residues observed to surround the chromophore. Arg87 and Glu222 (GFP numbering 96 and 222), the only two residues conserved between copGFP, GFP and GFP-like proteins are involved in autocatalytic genesis of the chromophore. Accordingly, the copGFP structure provides an alternative platform for the development of a new suite of fluorescent protein tools. Moreover, the structure suggests that the autocatalytic genesis of the chromophore is remarkably tolerant to a high degree of sequence and structural variation within the beta-can fold of the GFP superfamily. (c) 2006 Elsevier Ltd . All rights reserved.
Resumo:
A novel method that relies on the decoupling of the energy production and biosynthesis processes was used to characterise the maintenance, cell lysis and growth processes of Nitrosomonas sp. A Nitrosolnonas culture was enriched in a sequencing batch reactor (SBR) with ammonium as the sole energy source. Fluorescent in situ hybridization (FISH) showed that Nitrosomonas bound to the NEU probe constituted 82% of the bacterial population, while no other known ammonium or nitrite oxidizing bacteria were detected. Batch tests were carried out under conditions that both ammonium and CO, were in excess, and in the absence of one of these two substrates. The oxygen uptake rate and nitrite production rate were measured during these batch tests. The results obtained from these batch tests, along with the SBR performance data, allowed the determination of the maintenance coefficient and the in situ cell lysis rate, as well as the maximum specific growth rate of the Nitrosomonas culture. It is shown that, during normal growth, the Nitrosomonas culture spends approximately 65% of the energy generated for maintenance. The maintenance coefficient was determined to be 0.14 - 0.16 mgN mgCOD(biomass)(-1) h(-1), and was shown to be independent of the specific growth rate. The in situ lysis rate and the maximum specific growth rate of the Nitrosomonas culture were determined to be 0.26 and 1.0 day(-1) (0.043 h(-1)), respectively, under aerobic conditions at 30 degrees C and pH7. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A minor groove binder (MGB) TaqMan real-time PCR assay was developed for the detection of respiratory syncytial virus (RSV) in clinical specimens. Upon evaluation of the assay, notable differences were observed in the overall fluorescent response obtained from RSV positive specimens, with some linear amplification curves deviating only slightly from baseline fluorescence. Sequencing of the probes targets in these RSV strains revealed single base mismatches with the MGB TaqMan probe. overall, these results highlight the usefulness of MGB TaqMan probes for the detection of mismatches, but suggest that MGB Taqman probes have limitations for routine screening for uncharacterised viral strains. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Aim: To rapidly quantify hepatitis B virus (HBV) DNA by real-time PCR using efficient TaqMan probe and extraction methods of virus DNA. Methods: Three standards were prepared by cloning PCR products which targeted S, C and X region of HBV genome into pGEM-T vector respectively. A pair of primers and matched TaqMan probe were selected by comparing the copy number and the Ct values of HBV serum samples derived from the three different standard curves using certain serum DNA. Then the efficiency of six HBV DNA extraction methods including guanidinium isothiocyanate, proteinase K, NaI, NaOH lysis, alkaline lysis and simple boiling was analyzed in sample A, B and C by real-time PCR. Meanwhile, 8 clinical HBV serum samples were quantified. Results: The copy number of the same HBV serum sample originated from the standard curve of S, C and X regions was 5.7 × 104/ mL, 6.3 × 102/mL and 1.6 × 103/mL respectively. The relative Ct value was 26.6, 31.8 and 29.5 respectively. Therefore, primers and matched probe from S region were chosen for further optimization of six extraction methods. The copy number of HBV serum samples A, B and C was 3.49 × 109/mL, 2.08 × 106/mL and 4.40 × 107/mL respectively, the relative Ct value was 19.9, 30 and 26.2 in the method of NaOH lysis, which was the efficientest among six methods. Simple boiling showed a slightly lower efficiency than NaOH lysis. Guanidinium isothiocyanate, proteinase K and NaI displayed that the copy number of HBV serum sample A, B and C was around 105/ mL, meanwhile the Ct value was about 30. Alkaline failed to quantify the copy number of three HBV serum samples, Standard deviation (SD) and coefficient variation (CV) were very low in all 8 clinical HBV serum samples, showing that quantification of HBV DNA in triplicate was reliable and accurate. Conclusion: Real-time PCR based on optimized primers and TaqMan probe from S region in combination with NaOH lysis is a simple, rapid and accurate method for quantification of HBV serum DNA. © 2006 The WJG Press. All rights reserved.
Resumo:
Enterovirus 71 (EV71) is one of the main causative agents of hand, foot and mouth disease (HFMD) in young children. Infections caused by EV71 could lead to many complications, ranging from brainstem encephalitis to pulmonary oedema, resulting in high mortality. Thus, rapid detection of the virus is required to enable measures to be implemented in preventing widespread transmission. Based on primers and probes targeting at the VP1 region, a real-time reverse-transcriptase polymerase chain reaction (RT-PCR) hybridization probe assay was developed for specific detection of EV71 from clinical specimens. Quantitative analysis showed that the assay was able to detect as low as 5 EV71 viral copies and EV71 was detected from 46 of the 55 clinical specimens obtained from pediatric patients suffering from HFMD during the period from 2000 to 2003 in Singapore. This study showed that the single tube real-time RT-PCR assay developed in this study can be applied as a rapid and sensitive method for specific detection of EV71 directly from clinical specimens. (c) 2005 Elsevier Ltd. All rights reserved.