935 resultados para FILLED POLYPROPYLENE
Resumo:
The occurrences of diapirs, gas-filled zones and gas plumes in seawater in Qiongdongnan Basin of South China Sea indicate that there may exist seepage system gas-hydrate reservoirs. Assuming there has a methane venting zone of 1500 m in diameter, and the methane flux is 1000 kmol/a, and the temperature of methane hydrate-bearing sediments ranges from 3 degrees C to 20 degrees C, then according to the hydrate film growth theory, by numerical simulation, this paper computes the temperatures and velocities in 0 mbsf, 100 mbsf, 200 mbsf, 425 mbsf over discrete length, and gives the change charts. The results show that the cementation velocity in sediments matrix of methane hydrate is about 0.2 nm/s, and the seepage system will evolve into diffusion system over probably 35000 years. Meanwhile, the methane hydrate growth velocity in leakage system is 20 similar to 40 times faster than in diffusion system.
Resumo:
In this study, the preparations of biodiesel from three different feedstocks, including rapeseed oil, high acidified Chinese wood oil and trap grease, were carried out in a pilot scale of 200 t yr(-1) biodiesel production system. The optimum operating conditions for transesterification of rapeseed oil in plug flow reactor were found to be as follows: the catalyst dosage is 1.2 wt%; the retention time is about 17 min; the bed temperature is 65 degrees C; the oil/methanol ratio is 1:6; the content of methyl ester is 96.33% under these conditions. A kind of ion exchange resin, a solid acid catalyst, filled in the fixed bed reactor was used as the esterification catalyst for the pretreating of high acidified oil. The acid value of Chinese wood oil could be reduced from 7 to 0.8 mg KOH.g(-1) after 88 min, the optimum operating conditions were obtained as follow: molar ratio of methanol to oil is about 6:1, the temperature of the fixed bed, 65 degrees C and the retention time, about 88 min. Also a kind of acidified oil, namely trap grease, with the acid value being 114 mg KOH.g(-1) could be equally converted to a good biodiesel product through this system. Generally, the refined biodiesel product generated through this system could meet China #0 Biodiesel Standard, as well as Germany Biodiesel Standard for most indexes. It indicates that the designed process in this system has a good adaptability for different kinds of oil.
Resumo:
High speed visualizations and thermal performance studies of pool boiling heat transfer on copper foam covers were performed at atmospheric pressure, with the heating surface area of 12.0 mm by 12.0 mm, using acetone as the working fluid. The foam covers have ppi (pores per inch) from 30 to 90, cover thickness from 2.0 to 5.0 mm, and porosity of 0.88 and 0.95. The surface superheats are from -20 to 190 K, and the heat fluxes reach 140 W/cm(2). The 30 and 60 ppi foam covers show the periodic single bubble generation and departure pattern at low surface superheats. With continuous increases in surface superheats, they show the periodic bubble coalescence and/or re-coalescence pattern. Cage bubbles were observed to be those with liquid filled inside and vented to the pool liquid. For the 90 ppi foam covers, the bubble coalescence takes place at low surface superheats. At moderate or large surface superheats, vapor fragments continuously escape to the pool liquid. Boiling curves of copper foams show three distinct regions. Region I and II are those of natural convection heat transfer, and nucleate boiling heat transfer for all the foam covers. Region III is that of either a resistance to vapor release for the 30 and 60 ppi foam covers, or a capillary-assist liquid flow towards foam cells for the 90 ppi foam covers. The value of ppi has an important effect on the thermal performance. Boiling curves are crossed between the high and low ppi foam covers. Low ppi foams have better thermal performance at low surface superheats, but high ppi foams have better one at moderate or large surface superheats and extend the operation range of surface superheats. The effects of other factors such as pool liquid temperature, foam cover thickness on the thermal performance are also discussed.
Resumo:
本工作通过电子束预辐照处理和反应挤出方法,制备了丙烯酸功能化预辐照聚丙烯rPP-g-AA,采用化学滴定和红外光谱方法均证明接枝共聚物的存在,同时确定了预辐照剂量和单体浓度对接枝率的影响:(1)当单体浓度一定时,接枝率随预辐照剂量的增加而增加并逐渐达到平台值;(2)当预辐照剂量固定时,单体浓度在0~4.0wt%范围内,接枝率几乎呈线性增加。研究发现,丙烯酸(AA)接枝链能起到异相成核作用而促进预辐照聚丙烯(rPP)的结晶过程,但却不改变结晶晶型;虽然接枝反应可以部分抑制降解反应,但相对于原料聚丙烯(PP),接枝产物的力学性能仍大大下降;因此提出的反应机理认为接枝反应主要是通过链断裂降解反应形成的端自由基引发的,从而形成了以端基接枝为主的产物。 为了控制PP接枝过程中的严重降解,本工作首次提出了均相和异相引发接枝反应的原理,即采用部分rPP和预辐照聚乙烯(rPE)分别作为PP接枝反应的均相和异相“引发剂”,经反应挤出制备丙烯酸功能化聚丙烯PP-g-AA。对于均相引发体系:(1)当rPP用量为20phr时,PP-g-AA的接枝率已经达到rPP-g-AA的水平,而且降解反应得到有效控制;(2)和PP/rPP-g-AA共混物的对比研究证明,均相引发接枝产物不但接枝率明显提高,而且接枝分布非常均匀;(3)由此提出均相引发主要是发生rPP和PP分子间夺氢反应并形成以基体PP接枝为主的产物,而rPP分子内夺氢反应形成的接枝产物rPP-g-AA只占较少比例。对于异相引发体系: (1)通过红外光谱表征及接枝率计算得出异相引发接枝产物的接枝率比相应的PP/ rPE-g-AA共混物略高;(2)由于rPE及rPE-g-AA对基体PP的结晶没有影响,通过异相引发接枝产物中PP的结晶温度升高直接验证了异相引发接枝反应的实现;(3)提出的机理认为异相引发主要发生在rPE的分子内夺氢并形成rPE-g-AA,造成rPE引发的PP分子间夺氢反应形成PP-g-AA产物的比例下降。 本工作还详细研究了rPP预辐照剂量、rPP用量和单体浓度对均相引发反应的影响。得到的结果如下:(1)高预辐照剂量导致了接枝率下降的“假相”是由于形成的微凝胶造成的;(2)rPP用量的增大在提高接枝率的同时也导致降解反应的逐渐增强;(3)单体浓度的增加导致接枝率的逐步提高并最终达到最大值,而且可能导致部分微凝胶的产生;(4)接枝没有破坏PP-g-AA结晶的完善性和晶型,却能促进了晶体在(040)晶面的生长并可能产生部分横晶形态;(5)PP-g-AA和金属能形成良好的粘接作用。 以上述制备的rPP-g-AA和PP-g-AA增容PP/聚对苯二甲酸丁二醇酯(PBT)共混体系,发现高分子量的PP-g-AA比低分子量的rPP-g-AA的增容效果要好,因此认为PP-g-AA和PBT通过酯化反应形成的长链接枝共聚物PP-g-PBT对PBT相的分散和界面作用增强更加有效。而随着增容剂PP-g-AA比例的增加,原位反应生成的PP-g-PBT逐渐增加,使得PBT相分散和界面增强效果更加显著,因此共混物的力学性能也更佳;DSC研究发现,随着PBT相尺寸减小到1μm以下,PBT出现了结晶受限行为。 将引发剂rPP和单体AA加入到PP/PBT共混体系中实现了一步法反应增容,得到共混物的扭矩、相形态、力学性能都和分步法增容共混物的结果几乎相同,这说明一步法共混能使PBT产生良好分散并得到性能较佳的产物,从而为高分子合金材料制备提供了一种简单有效的方法。 采用该方法对AA、马来酸酐(MAH)和甲基丙烯酸甘油酯(GMA)三种单体的接枝和增容反应对比研究证明,AA的效果最好,MAH次之,而GMA的效果最差,分析认为,AA和MAH通过接枝反应形成PP-g-AA和PP-g-MAH,随后再和PBT发生酯化增容反应形成PP-g-MAH-PBT共聚产物,而GMA首先和PBT反应形成PBT-GMA,而后由长链PBT-GMA发生接枝反应生成PP-g-GMA-g-PBT,但是这种接枝反应的效率很低,由此造成增容效果较差。
Resumo:
1.热可交联聚酰亚胺/高性能热塑性树脂共混体系的研究聚苯硫醚[Poly(phenylene sulfide),PPS]是由刚性结构的苯环和柔性的硫醚连接起来,交替排列构成的线性高分子化合物,具有高的热稳定性、良好的耐化学药品性、优良的电绝缘性、耐老化性和阻燃性等综合性能优异的高性能树脂。聚醚矾〔Poly(ether sulfone),PES]是一种非结晶性的热塑性工程塑料一,具有优异的热稳定性、耐高温蠕变性及优异的物理机械性能。其高的玻璃化转变温度(Tg=225℃),使其可以在较高温度下作为结构材料使用。本论文研究了PPS/PES二元共混物的热性能和动态力学性能,并以热可控交联的低分子量多官能单体PMR-POI(聚醚酰亚胺)为界面增强剂,分别研究了POI与PPS、PES之间的接枝和/或交联反应,POI对PPS结晶行为的影响,POI对PES分子运动的影响和POI对PPS/PES共混体系的界面增强。主要结果如下:1.PPS/PES共混物相容性的特征在于选择性的部分相容,少量的非晶PPS分子可以扩散进入PES相区,相反的扩散过程则不会发生。2.PPS/PES共混物的热学性质和动态力学性能主要受连续相的控制。3.PPS相的性能主要受其结晶度的影响,因此能够改变其结晶度的因素均会改变PPS相的性质。4.光谱学和流变的证据表明,POI同PES,PPs共混过程中有接枝反应发生,分子链增长,分子量加大。这种接枝和/或交联反应的程度是热可控的。5.POI是PPS的增塑剂,成核剂和扩链剂,与POI共混使得PPS结晶速率增加,平衡熔点上升,表面折叠自由能降低。6;在PES/POI体系中Pol对PEs起到了增塑的作用,Tg降低,经高温热处理后Tg上升。因此,POI对PES性能的影响也是热可控的。7.PMR-POI能够在PPS/PES共混体系中有效地扩散并起到了降低分散相粒子的尺寸、增强界面的作用。它是该共混体系的有效界面增强剂。8."高温退火既能够提高扩散速率也能够提高反应速率;二者相互竞争。2.马来酸配封端溉碳酸丙撑酯的研究二氧化碳与环氧丙烷交替共聚物(polypropylene careonate,PPC)是由二氧化碳活化并与环氧丙烷共聚而成的一类可完全生物降解的新型高分子材料,具有巨大的潜在应用价值。本论文讨论了马来酸配封端的聚碳酸丙撑酯(MA-PPC)和未封端的PPC的粘弹性、流变行为以及热降解和热分解行为,并得出如下结论:1.马来酸配封端抑制了PPC解拉链式的热分解和无规链断裂热降解,PPC的热稳定性和力学性能得到提高。2.PPC和MA-PPC在玻璃化转变温度有相似的自由体积分数,PPC的Tg比MA-PPC稍低。虽然PPC和MA-PPC玻璃化转变表观活化能E。和平均松弛时间T随温度升高单调降低,但PPC的分子运动对温度更敏感,而MA-PPC较稳定。马来酸配封端改变了PPC分子运动的特征及松弛行为,许多实验证据证明,这是由于封端后的PPC大分子链间的相互作用增强及分子链缠结密度增加。3.MA-PPC在70℃左右会发生脱水,实现大分子偶联反应并得到变温红外光谱、分子量成倍增加及线膨胀数据的有力支持。4.用零剪切粘度几。的方法测得PPC及MA-PPC加工过程中的热降解温度,它们分别为150℃和175℃,在此温度以上,η0降低速率的增加归因于大分子的主链断裂以及解拉链反应。5.测得了PPC的临界缠结分子量,它几乎是MA-PPC相应值(6613)的3倍。这表明马来酸配封端不仅改善了PPC的熔体弹性,而且也大大增强了PPC的缠结密度以及分子链间的相互作用。6.在本实验条件下在氮气和空气的气氛中,MA-PPC同PPC的热降解和热分解行为几乎一致,即在PPc的加土过程可以忽略氧气对其的影响。7.虽然MA-PPC的玻璃化温度在40℃左右,但在40℃-120℃的温度区间内,MA-PPC达不到粘流状态。8.没有剪切力时在120℃-150℃,30分钟内,MA-PPC几乎没有降解,在静态条件下,低于170℃时,MA-PPC的解拉链式降解是十分轻微的,当温度超过170℃,PPC降解相当严重。9.在热机械力存在的情况下,发生无规断链的机会增加,无规断链又会加速解拉链降解,因此实际加工中的加工窗口比静态下窄,MIA-PPC的加工窗口应为130℃-160℃。10.MA-PPC的热分解过程是一步完成的,热分解温度随升温速率的加快而提高,并计算出热分解的表观活化能为623.3KJ/mol。
Resumo:
众所周知,聚乙烯、聚丙烯因其良好的加工性能及价格相对低廉而得到了广泛应用,但刚性和韧性的不足限制了它们在工程领域的应用。因此,提高聚乙烯、聚丙烯的刚性和韧性就成为高分子科学界和工程界一重要研究课题。本论文尝试用玻璃珠增韧聚云烯、聚丙烯,并系统研究体系的结构和性能,得到的主要结果有:1.成功实现了玻璃珠对高密度聚乙烯的增韧。在刚性、热稳定性显著提高的同时,玻璃珠增韧的高密度聚乙烯仍保持着很高的低温缺口冲击强度(-10℃,玻璃珠含量48wt%时,冲击强度为16KJ/m2)。2.得到了玻璃珠增韧高密度聚乙烯在脆韧转变点临界粒子间距(IDc)与温度的关系。这是第一条无机刚性粒子增韧热塑性聚合物体系的工Dc与温度的关系曲线。结果表明与弹性体增韧热塑性聚合物体系类似,工Dc随温度的升高而非线性增大。3.虽然没能在低温和常温下实现玻璃珠对聚丙烯的增韧,但是在较高的温度下仍发现了玻璃珠对聚丙烯有明显的增韧效果,且体系的脆韧转变温度随玻璃珠含量的增加而降低。4.用偏光显微镜(PLM)成功跟踪了所用聚丙烯p晶转变为仪晶的全过程。结果表明β晶能重结晶成以晶,重结晶生成的以晶熔点要比最初生成的a晶高五度左右。5.当聚丙烯存在两种晶型(a和β)时,实验发现聚丙烯/玻璃珠共混体系出现模量随玻璃珠含量增加先下降后上升的反常现象。进一步研究结果揭示该反常现象是玻璃珠填充和提高β晶形成能力二者竞争的结果6. 实验发现聚丙烯的β晶含量与添加玻璃珠的尺寸、含量及热处理温度有关。同样玻璃珠含量下粒子尺寸小有利于β晶的生成;对一定组成的共混物,存在一个最佳β晶形成温度。
Resumo:
水稻是重要的粮食作物,其产量的增加和品质的改良都是关系国计民生的大事。就我国现阶段的国情而言,水稻产量在现有水平上稳步提升仍是未来十几年甚至几十年农业生产最重要的目标之一。尽管根据“超级杂交水稻育种”的战略设想和水稻育种实践,通过不断地改进育种技术可望在更高的产量水平上进行水稻杂种优势利用,在稻属植物内还具有很大的产量潜力可以挖掘。然而,仅仅从现有的种质基础出发,要更大幅度提高水稻单产,实现“超级杂交稻”的目标也存在一些困难:现有的推广品种是二倍体,尽管种类众多,但是其基因组的来源相对单一;同时,水稻基因组DNA含量也是作物中最少的,基因组内寻求开发潜力有一定困难;水稻作为C3植物,光合利用效率不高也是制约水稻产量提高的因素之一。因此,寻求常规手段以外的技术突破或者方法创新,是实现“超级杂交稻”的目标的迫切需求。本研究利用秋水仙素能抑制细胞分裂中纺锤丝的收缩、使细胞染色体加倍的作用,对水稻幼穗诱导的愈伤组织细胞进行加倍,并分化出再生植株;创制出水稻同源四倍体新的种质材料,在此基础上选育水稻同源四倍体雄性不育三系材料,并实现水稻同源四倍体的三系配套,开展水稻同源四倍体杂种优势利用和四倍体杂交水稻选育研究,建立水稻同源四倍体杂种优势利用的新技术体系。这不仅有助于倍性水平杂种优势的开拓和利用,同时也将为我国新世纪“超级稻”育种研究开辟一条新的技术途径。 水稻幼穗诱导愈伤组织并分化成苗是一项成熟、简单的组织培养技术。本研究以普通二倍体水稻亲本为材料,用秋水仙素进行水稻的多倍体化诱导,创制同源四倍体水稻三系亲本材料并对其进行鉴定。多倍体化以秋水仙素诱导的愈伤组织培养为基础,研究不同秋水仙素浓度梯度和愈伤组织诱导培养基组合对诱导四倍体植株的影响。结果表明在MS+2,4 D 1.0mg/L+ KT0.2mg/L+ IAA0.2mg/L 和500mg/L的秋水仙素处理下,水稻愈伤组织染色体加倍(有最高的效率)效果较好,平均加倍频率可达25.26%,其中,材料CDR22和IR26诱导较易成功,加倍频率分别达到75%和26.5%;相对材料94109 1.3%加倍频率和冈46B 10.8%加倍频率,诱导率差异极显著。 对水稻四倍体材料进行了形态学鉴定结果表明,与二倍体水稻对照相比其株高、穗长、花粉育性等主要农艺性状,确定四倍体材料在穗长和千粒重两方面极显著提高,种子的长度和宽度也显著增长。对花粉育性鉴定,确认水稻四倍体不育系材料仍为不育,保持系材料自交和杂交可育,恢复系材料自交和杂交可育。对四倍体材料进行细胞形态、染色体数目等方面进行细胞学鉴定,经核型分析表明水稻四倍体材料具有48条染色体,是二倍体水稻的两倍。水稻四倍体材料根尖分生组织细胞与二倍体的根尖分生组织细胞相比,细胞体积、细胞核和核仁显著增大。四倍体三系材料在细胞有丝分裂中期均可规则排列在赤道板,并能均等地移向两极;后期观察中没有发现染色体分离滞后现象,分裂末期细胞能够形成大小相对均一的子细胞。水稻同源四倍体三系材料细胞分裂未见异常,植株生长发育正常。 从1996年至2006年,针对结实率、有效分蘖、着粒数和穗长等主要农艺性状,通过系谱选育的方法,对培育的同源四倍体水稻亲本材料进行了连续选择和改良,取得较好成效。表现为结实率的改良效果极佳,所有改良材料的平均结实率均呈上升趋势,如D237(29.70%→72.70%)、DTB(19.55%→53.21%)等。有效分蘖总体呈现上升趋势,但在不同的年份,如1998和2002存在较大的负向波动。部分材料改良效果明显,如D19B(5.87→13.50)、D什香 (7.00→12.00)等;同时一些材料如DTB和D明恢63虽然总体略有提高,但在不同的年份波动很大,因此存在较大改良阻力,原因还有待进一步研究。着粒数的改良上升趋势比较显著,除保持系的DTB之外,其余材料的平均着粒数有显著提高。穗长的改良阻力较大,虽然不同材料总体上有所提高,但效果并不显著,并且不同年份有较大负向波动(2001)。此外还对株高、剑叶长等性状也进行了选择,但效果不显著,原因有待进一步提高。同源四倍体材料产量相关性状遗传改良幅度不一致,保持系和恢复系间的遗传改良效果也存在差异。这为同源四倍体水稻的进一步利用打下了良好的基础。 籼稻和粳稻亚种间杂交及杂种优势利用的主要障碍就是其低的结实率。而同源四倍体杂交水稻的研究为提高杂交水稻的杂种优势利用创造了新的途径。本研究通过随机区组设计方案,挑选性状优良的二倍体水稻材料,包括雄性不育系,保持系和恢复系进行秋水仙素诱导加倍,从而获得同源四倍体水稻对应的三系材料。利用选育的优良水稻同源四倍体三系材料,配制7个杂交组合,杂交F1代与其恢复系亲本进行比较,用于计算超亲优势(HB);而杂交F1代与生产上大面积推广的二倍体杂交品种汕优63进行比较,用于计算杂种优势。结果显示,同源四倍体杂交水稻的超亲优势表现为:每株有效穗变化幅度为1.4%至105.9%,总粒数为0.5%至74.3%,每穗实粒数为17.6%至255.7%,结实率为9.6%至130.4%。这些农艺性状的改良使得这7个杂种F1的理论产量的超亲优势高达64.8%至672.7%。小区试验中四倍体杂交水稻组合T461A/T4002和T461A/T4193分别比二倍体对照汕优63提高46.3%和38.3%以上,除一个品种以外所有品种产量均接近或高于汕优63的产量。同源四倍体水稻强大的杂种优势表明,亚种间杂交育性低的问题可通过四倍体化及强化选择来解决。此外,同源四倍体杂交水稻器官的巨大性也是其产量提高的有利因素,水稻同源四倍体三系杂种优势利用研究具有一定的理论价值和商业生产潜力。 Rice is one of the major food crops, the improvement of the production and quality of it is an important thing related to the people's livelihood. On China's current national conditions, steadily increase of the rice yield based on the current level is still one of the most important goals in the next decade or even decades of agricultural production. According to the "super hybrid rice breeding" the strategic and rice breeding practice, improvement of the use of hybrid rice heterosis through continuous improvements in breeding technology is expected to get a higher level of rice yield, there are also a great yield potential can be exploited. However, there are also some difficulties to increase rice yield obviously and implement the goal of "super hybrid rice" based on the existing germplasm: Rice varieties in promotion are diploid, although there are many varieties, but their genome are from a comparatively single source; Meanwhile, the rice genome DNA are the least among the crops, it is difficult to exploit the development potential within the genome; Rice as C3 plants, photosynthetic efficiency is not high, it is one of the factors constraint rice yield. Therefore, seeking technological breakthroughs or innovative methods different from conventional means is the urgent needs to reach the target of "super hybrid rice". Using colchicine inhibit spindle contraction during cell division, double the cell chromosome, we induced callus cells from rice panicle to be doubled, and differentiated regeneration; we created a new autotetraploid rice germplasm material, and on that basis we bred male sterility three line autotetraploid rice materials, and the achieved the three line rice autotetraploid matchmaking, researched in autotetraploid rice heterosis usage and tetraploid hybrid rice breeding, constituted a new technology system of autotetraploid hybrid rice heterosis utilization. This not only helps the tetraploid rice heterosis exploration and use, but also inaugurates a new technical means for China in the new century "super rice" breeding research. We chose ordinary diploid rice as materials, using colchicine to induce the polyploidization, created the autotetraploid rice three-line materials and identified them. The polyploidization was based on the colchicine-induced callus tissue culture, and we experimented different colchicine concentrations and culture mediums to induce tetraploid plants, confirmed that the optimal concentration for inducement was 500 mg/L, the average induce rate was 25.26 %. Among all the materials, CDR22 and IR26 had higher induced rate; in contrary, 94109 and GANG46B had lower induced rate, the difference was significant. Autotetraploid materials was identified of both morphological and cytological, compared plant height, length of pollen sterility, and other major agronomic traits with a diploid rice as the control plant, identified that the autotetraploid materials had very significant advantages in ear length and thousand-grain weight, as well as the size of the seeds. Cytology identification included observation of the cell morphology, the number of chromosomes, and karyotype analysis on the autotetraploid materials confirmed that their chromosome number was 48, twice of the diploid rice. Mitoses in the three lines were common: chromosomes arrayed normally in metaphase and separated balanced into the two poles, chromosome moved without lagging in anaphase and daughter cells normally formed in telophase except one. It has been proved that tetraploid rice has normal meiosis as their diploid relatives, which usually including series of sub-phases as interphase, prophase I (five sub-phases), prophase II, metaphase I, II, anaphase I, II and telophase I, II. However, abnormal phenomena, such as formation of tetravalent, trivalent and univalent, chromosome lagging and so on, which would finally block meiosis. Configurations of chromosome in metaphaseⅠwere versatile in structure and form accept the bivalent. That condition varied in different strain, suggesting more complex paring configurations and more versatile genetic characters in tetraploid rice. All these abnormalities in meiosis contributed to low fertility of gamete and might consequently resulted in low seed setting. Successive selection and improvement on seed set, productive tiller per plant, total grains per panicle, panicle length and so on had been carried out from 1996 to 2006. The raise of seed sets was significant in both restorers and maintainers. Seed sets of some strains were improved more significantly than others, for example D237(29.70%→72.70%)、DTB(19.55%→53.21%)and et al.. Productive tiller per plant was improved to some extant. The tendency of improvement was rising on the whole but changed in some years such as 1998 and 2002. Part of the stains increased greatly, such as D19B(5.87→13.50)、Dshixiang (7.00→12.00) and so on, but some strains including DTB and Dminghui63 only increased little and decreased in some years by unknown reason. Total grains per panicle increased significantly and all strains except DTB increased. Improvement of panicle length termed to be hard. Different strains showed different capacities for improvement and floating existed in different years for example 2001. It has been proved that other agronomical traits including plant length, flag leaf length and so on could be improved but not significantly by selection also. In a word, agronomical traits could be raised by successive selection that is prerequisite for further utility of autotetraploid rice. Poor fertility is the main barrier for utilizing heterosis between the two rice (Oryza stiva L.) sub-species, indica and japonica. Recently, the development of autotetraploid hybrids (2n=4x=48) has been suggested as a new method for increasing heterosis in hybrid rice. Using standard experimental protocols, the elite diploid rice male sterile, maintainer, and restorer lines were colchine-doubled and autotetraploid counterparts were obtained. Seven resulting hybrids were analyzed for heterobeltiosis (HB), where the F1 was compared to the male parent, and the degree of heterosis, where the F1 was compared to the diploid commercial hybrid, Shanyou 63. The HB among the autotetraploid hybrids ranged from 1.4 to 105.9% for the productive panicles per plant, 0.5 to 74.3% for total kernels per panicle, 17.6 to 255.7% for filled kernels per panicle, and 9.6 to 130.4% for seed set. Improvements in these yield components resulted in the HB for kernel yield ranging from 64.8 to 672.7% among the seven hybrids. Hybrids T461A/T4002 and T461A/T4193 yielded 46.3 and 38.3% more, respectively than Shanyou 63, and all other hybrids but one yielded the same or more than Shanyou 63. The high heterosis for yield suggests that hybrid sterility between two rice sub-species may be overcome by using tetraploid lines followed by intensive selection. Also, the gigantic features of the autotetraploid hybrids may establish a plant structure able to support the higher yield.
Resumo:
自养硝化过程在自然界氮素循环和污水处理系统脱氮过程中起着关键作用。因此,了解有机碳对硝化的影响和硝化菌与异养菌之间的竞争对微生物生态学和污水处理系统设计都很重要。目前对氨氧化到硝酸盐氮过程的研究文献很多,但对亚硝酸盐氧化过程在异养菌的存在下如何受到有机碳影响的研究甚少。本文从生理生化指标、基因组学、蛋白组学三方面考察了在实验室条件下有机碳(乙酸钠)对硝化细菌和异养菌组成的混合菌群的硝化性能、菌群结构及代谢功能的变化的影响。 全文分为两大部分: 第一部分为乙酸钠对游离态硝化混合菌群的硝化性能和菌群结构的短期影响。混合菌株先在自养条件下进行连续培养,两个月后硝化速率达到20 mg N/(L·d);而后离心收集菌体进行批式实验。在批式反应器中,初始亚硝氮均为126mg N/ L,乙酸钠-C 与亚硝酸盐-N 的比分别为0,0.44,0.88,4.41,8.82。结果表明:在低C/N 比(0.44 和0.88)时,亚硝酸盐去除速率比C/N=0 下高,细菌呈现一次生长;而在高C/N 比(4.41 和8.82)时,出现连续的硝化反硝化,亚硝酸盐去除率仍比对照下高,细菌呈现二次生长。不同C/N 比下微生物群落明显不同,优势菌群从自养和寡营养细菌体系(包括亚硝酸盐氧化菌,拟杆菌门,α-变形菌纲,浮霉菌门和绿色非硫细菌下的一些菌株)过渡到异养和反硝化菌体系 (γ-变形菌纲的菌株尤其是反硝化菌Pseudomonas stutzeri 和P. nitroreducens 占主导)。 第二部分为乙酸钠对硝化混合菌群生物膜的硝化性能和菌群结构的长期影响。接种富集的硝化混合菌群于装有组合式填料的三角瓶中,于摇床中自养培养;两个月后填料上形成生物膜的硝化速率达到20 mg N/ (L·d);而后进行长期实验,每12 小时更换混合营养培养基(亚硝氮约200 mg N/ L,C/N 比同上)。结果显示:相较于C/N 比=0 时的亚硝酸盐氧化反应来说,低C/N 比出现了部分的反硝化,而高C/N 比则是几乎完全的反硝化。与对照比,C/N=0.44 时亚硝酸盐氧化速率并未受乙酸钠的影响,反而上升了,但C/N=0.88 时亚硝酸盐氧化速率有所下降。菌群结构分析表明自养对照与混合营养下微生物群落的不同;PCR-DGGE未检测出混合营养下硝化杆菌的存在,而显示异养菌尤其是反硝化菌的大量存 在。荧光定量PCR 结果表明随C/N 比上升,硝化杆菌数量从2.42 × 104 下降到1.34× 103 16S rRNA gene copies/ ng DNA,反硝化菌由0 增加至2.51 × 104 nosZgene copies/ ng DNA。SDS-PAGE 的结果表明不同C/N 比下的蛋白组较为复杂且呈现一定的差异性。 有机碳对亚硝氮氧化及微生物群落的影响很复杂,本文分别讨论了对游离态和生物膜固定态两种状态的混合菌群相应的短期和长期影响研究。研究发现,有机碳并非一定带来硝化的负影响,如果控制在适当的C/N 比范围,有机碳是有利于亚硝氮氧化的。这些发现阐明了有机碳和硝化反硝化的关系,填补了硝化微生物生态学上的空白,对污水处理系统中减少异养菌的影响并提高氮去除率有一定理论指导意义。 Nitrification plays a key role in the biological removal of nitrogen in both nature and wastewater treatment plant (WWTP). So, understanding of the effect of organic carbon on nitrification and the competition between nitrifying bacteria and heterotrophic bacteria is important for both microbial ecology and WWTP design and operation. Despite the fact that the nitrification process of ammonia to nitrate has been extensively investigated, it is not known how the process of nitrite oxidization is affected by organic carbon when heterotrophic bacteria are present. By measuring different physiological and biochemical parameters, as well as using genomic DNA and proteome analysis, we investigated the influence of organic (acetate) on nitrite oxidizing performance, community structure and metabolic function of nitrite-oxidizing and heterotrophic bacteria under laboratory conditions. The dissertation involves two parts: Part one deals with the effect of organic matter on functional performance and bacterial community shift of nitrite-oxidizing and heterotrophic bacteria under suspended state. The bacteria were prepared in a continuous-flow stirred reactor under autotrophic condition; after two months, the nitrification rate of the culture reached about 20 mg N/ (L·d); then the bacteria were harvested for the next batch experiments. The initial concentrations of nitrite were 126 ± 6 mg N/ L in all flasks, and sodium acetate (C) to nitrite (N) ratios were 0, 0.44, 0.88, 4.41, and 8.82, respectively. The results showed that at low C/N ratios (0.44 or 0.88), the nitrite removal rate was higher than that obtained under autotrophic condition and the bacteria had single growth phase, while at high C/N ratios (4.41 or 8.82), continuous aerobic nitrification and denitrification occurred besides higher nitrite removal rates, and the bacteria had double growth phases. The community structure of total bacteria strikingly varied with the different C/N ratios; the dominant populations shifted from autotrophic and oligotrophic bacteria (NOB, and some strains of Bacteroidetes, Alphaproteobacteria, Actinobacteria, and green nonsulfur bacteria) to heterotrophic and denitrifying bacteria (strains of Gammaproteobacteria, especially Pseudomonas stutzeri and P. nitroreducens). Part two describes the influence of acetate on nitrite oxidizing performance, community structure and metabolic function of nitrite-oxidizing and heterotrophic bacteria in biofilms. Bacterial enrichments was transferred into flasks with polypropylene carriers and cultured under agitated and autotrophic condition. After two month, the biofilms grown on the carriers had a nitrification rate of about 20 mg N/ (L·h); then the biofilms were refreshed with mixotrophic medium (nitrite were 200 mg N/ L in all flasks, and C/N ratios was the same as above) every 12 h. the results show: normal nitrite oxidization reactions were performed when C/N = 0, but nitrite oxidization and partial denitrification occurred with low C/N ratios (0.44 or 0.88). At high C/N ratios (4.41 or 8.82), we mainly observed denitrification. In contrast to C/N = 0, the nitrite oxidization rate was unaffected when C/N = 0.44, but decreased with C/N = 0.88. The structure of bacterial communities varied significantly between autotrophic and mixotrophic conditions. Nitrobacter was hard to detect by PCR-DGGE while heterotrophs and especially denitrifiers were in the majority under mixotrophic conditions. Real-time PCR indicated that the Nitrobacter population decreased from 2.42 × 104 to 1.34 × 103 16S rRNA gene copies/ ng DNA, while the quantity of denitrifiers obviously increased from 0 to 2.51×104 nosZ gene copies/ ng DNA with an increasing C/N ratio. SDS-PAGE indicated the complexity of and a certain difference between the proteome of nitrite-oxidizing and heterotrophic bacteria at different C/N ratios. We conclude that the influence of organic matter on nitrite oxidation and the community structure of NOB and heterotrophic bacteria is complex. In this dissertation, we focused on how sodium acetate influenced the system both under suspended state and in biofilms. We observed that acetate did not necessarily have a negative impact on nitrification. Instead, an appropriate amount of acetate benefited both nitrite oxidization and denitrification. These findings provide a greater understanding about the relationship between organics and nitrification; they fill the gaps in the field of microbial ecology of nitrifying bacteria; they also provide insight into how to minimize the negative impact of heterotrophic bacteria and maximize the benefit of nitrogen removal in biological treatment systems.
Resumo:
A full-ring PET insert device should be able to enhance the image resolution of existing small-animal PET scanners. Methods: The device consists of 18 high-resolution PET detectors in a cylindric enclosure. Each detector contains a cerium-doped lutetium oxyorthosilicate array (12 x 12 crystals, 0.72 x 1.51 x 3.75 mm each) coupled to a position-sensitive photomultiplier tube via an optical fiber bundle made of 8 x 16 square multiclad fibers. Signals from the insert detectors are connected to the scanner through the electronics of the disabled first ring of detectors, which permits coincidence detection between the 2 systems. Energy resolution of a detector was measured using a Ge-68 point source, and a calibrated 68Ge point source stepped across the axial field of view (FOV) provided the sensitivity profile of the system. A Na-22 point source imaged at different offsets from the center characterized the in-plane resolution of the insert system. Imaging was then performed with a Derenzo phantom filled with 19.5 MBq of F-18-fluoride and imaged for 2 h; a 24.3-g mouse injected with 129.5 MBq of F-18-fluoride and imaged in 5 bed positions at 3.5 h after injection; and a 22.8-g mouse injected with 14.3 MBq of F-18-FDG and imaged for 2 h with electrocardiogram gating. Results: The energy resolution of a typical detector module at 511 keV is 19.0% +/- 3.1 %. The peak sensitivity of the system is approximately 2.67%. The image resolution of the system ranges from 1.0- to 1.8-mm full width at half maximum near the center of the FOV, depending on the type of coincidence events used for image reconstruction. Derenzo phantom and mouse bone images showed significant improvement in transaxial image resolution using the insert device. Mouse heart images demonstrated the gated imaging capability of the device. Conclusion: We have built a prototype full-ring insert device for a small-animal PET scanner to provide higher-resolution PET images within a reduced imaging FOV. Development of additional correction techniques are needed to achieve quantitative imaging with such an insert.
Resumo:
The effect of adding internal fins to the injection tube of a storage cell target filled with a polarized atomic beam source has been studied. The tube conductance and the atomic beam intensity at the exit of the injection tube have been measured, observing an unexpectedly large beam loss. Simulations of the atomic beam reproduce the observed attenuation only when the non-zero azimuthal component of the atom's velocity is taken into account.
Resumo:
HIRFL was upgraded from beginning 2000. Besides of researches on nuclear physics, atomic physics, irradiative material and biology, the cancer therapy by heavy ion and hadron physics are being developing. The injector system of SFC+SSC can provide all ions from proton to uranium with higher intensity. The Cooling Storage Ring (CSR) has accelerated beams successful. The ions C-12(6+), Ar-36(18+), Xe-129(27+) have been accelerated up 1000MeV/u, 235MeV/u with about 10(9)similar to 10(8) ions per spill respectively. The beam momentum dispersion was measured from 4x10(-3) to 2x10(-4) after cooling by the electron cooler or similar to 4x10(-4) after accelerated to 1000MeV/u without cooling. In order to improve the nuclear structure and heavy isotope research in SFC+SSC energy domain, A Wien filter was added in front of RIBLL and gas was filled in first section of RIBLL; a new spectrometry SHANS has being installed. Presently, there are two starting version experimental setups at CSR.
Resumo:
Polypropylene (PP) microporous membranes were successfully prepared by swift heavy ion irradiation and track-etching. Polypropylene foils were irradiated with Au-197 ions of kinetic energy 11.4 MeV.u(-1) (total energy of 2245.8 MeV) and fluence 1x10(8) ions.cm(-2) at normal incidence. The damaged regions produced by the gold ions along the trajectories were etched in H2SO4 and K2Cr2O7 solutions leading to the formation of cylindrical pores in the membranes. The pore diameters of the PP microporous membranes increased from 380 to 1610 nm as the etching time increased from 5 to 30 min. The surface and cross-section morphologies of the porous membranes were characterized by scanning electron microscopy (SEM). The micropores in the membranes were found to be cylindrical in shape, homogeneous in distribution, and equal in size. Some mathematical relations of the porosity of the PP microporous membranes were established by analytic derivation. The microporous membranes were used in lithium-ion batteries to measure their properties as separators. The electrical conductivity of the porous membrane immersed in liquid electrolyte was found to be comparable to that of commercial separators by electrochemical impedance spectroscopy (EIS). The results showed that the porosity and electrical conductivity were dependent on the ion fluence and etching time. By adjusting these two factors, microporous membranes with good porosity and electrical conductivity were made that met the requirements for commercial use.
Resumo:
Polypyrrole nanostructure arrays, including simultaneously large quantities of nanowires and small quantities of partially filled nanotubules have been electrochemically synthesized in home-made etched ion-track polycarbonate (PC) templates. Diameter of the prepared nanostructures varies from 45 to 320 nm with their lengths up to 30 microns. Morphological studies of these nanostructures were performed by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. While optical absorption properties were studied by ultraviolet-visible-near infrared spectrophotometry (UV-vis-NIR). It has been observed that the absorption maximum of polypyrrole shifts to the longer wavelength side as the diameter of these nanostructures (nanowires and nanotubules) increases. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
论文介绍了超重充气谱仪的基本原理及此类装置的国际现状,在此基础上,对中国科学院近代物理研究所超重谱仪充气段的基本情况进行了描述。本工作采用离线和在线的方法对超重谱仪充气段进行了调试。在离线实验中,通过改变α源及探测装置的位置,确定了谱仪的接收度,得到了谱仪对不同能量及发散度的α粒子的传输效率,测试了充气对谱仪传输效率的影响,并对靶厚与传输效率间的关系进行了模拟研究。根据离线实验的结果,对谱仪进行了合理的改进。在线实验利用重离子束流轰击薄靶并观测靶反冲核的方法,确认了束流监测装置的最佳探测器和最佳安装位置,测试了谱仪对一些靶反冲核的传输效率。通过初步调试,测试了该超重谱仪充气段的一些基本性能,测量了谱仪的一些相关参数,为其投入今后的物理实验研究提供了必要的经验和参考
Resumo:
论文介绍了超重充气谱仪的基本原理及此类装置的国际现状,在此基础上,对中国科学院近代物理研究所超重谱仪充气段的基本情况进行了描述。本工作采用离线和在线的方法对超重谱仪充气段进行了调试。在离线实验中,通过改变α源及探测装置的位置,确定了谱仪的接收度,得到了谱仪对不同能量及发散度的α粒子的传输效率,测试了充气对谱仪传输效率的影响,并对靶厚与传输效率间的关系进行了模拟研究。根据离线实验的结果,对谱仪进行了合理的改进。在线实验利用重离子束流轰击薄靶并观测靶反冲核的方法,确认了束流监测装置的最佳探测器和最佳安装位置,测试了谱仪对一些靶反冲核的传输效率。通过初步调试,测试了该超重谱仪充气段的一些基本性能,测量了谱仪的一些相关参数,为其投入今后的物理实验研究提供了必要的经验和参考