947 resultados para Experiment container, ISS, FSL, FEM
Resumo:
Carotenoid-based yellowish to red plumage colors are widespread visual signals used in sexual and social communication. To understand their ultimate signaling functions, it is important to identify the proximate mechanism promoting variation in coloration. Carotenoid-based colors combine structural and pigmentary components, but the importance of the contribution of structural components to variation in pigment-based colors (i.e., carotenoid-based colors) has been undervalued. In a field experiment with great tits (Parus major), we combined a brood size manipulation with a simultaneous carotenoid supplementation in order to disentangle the effects of carotenoid availability and early growth condition on different components of the yellow breast feathers. By defining independent measures of feather carotenoid content (absolute carotenoid chroma) and background structure (background reflectance), we demonstrate that environmental factors experienced during the nestling period, namely, early growth conditions and carotenoid availability, contribute independently to variation in yellow plumage coloration. While early growth conditions affected the background reflectance of the plumage, the availability of carotenoids affected the absolute carotenoid chroma, the peak of maximum ultraviolet reflectance, and the overall shape, that is, chromatic information of the reflectance curves. These findings demonstrate that environment-induced variation in background structure contributes significantly to intraspecific variation in yellow carotenoid-based plumage coloration.
Resumo:
Current climate change models predict significant changes in rainfall patterns across Europe. To explore the effect of drought on soil CO2 efflux (FSoil) and on the contribution of litter to FSoil we used rain shelters to simulate a summer drought (May to July 2007) in an intensively managed grassland in Switzerland by reducing annual precipitation by around 30% similar to the hot and dry year 2003 in Central Europe. We added 13C-depleted as well as unlabelled grass/clover litter to quantify the litter-derived CO2 efflux (FLitter). Soil CO2 efflux and the 13C/12C isotope ratio (δ13C) of the respired CO2 after litter addition were measured during the growing season 2007. Drought significantly decreased FSoil in our litter addition experiment by 59% and FLitter by 81% during the drought period itself (May to July), indicating that drought had a stronger effect on the CO2 release from litter than on the belowground-derived CO2 efflux (FBG, i.e. soil organic matter (SOM) and root respiration). Despite large bursts in respired CO2 induced by the rewetting after prolonged drought, drought also reduced FSoil and FLitter during the entire 13C measurement period (April to October) by 26% and 37%, respectively. Overall, our findings show that drought decreased FSoil and altered its seasonality and its sources. Thus, the C balance of temperate grassland soils respond sensitively to changes in precipitation, a factor that needs to be considered in regional models predicting the impact of climate change on ecosystems C balance.
Resumo:
Biodiversity is rapidly declining, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades.
Resumo:
na provide students with motivation for the study of quantum mechanics. That microscopic matter exists in quantized states can be demonstrated with modem versions of historic experiments: atomic line spectra (I), resonance potentials, and blackbody radiation. The resonance potentials of mercury were discovered by Franck and Hertz in 1914 (2). Their experiment consisted of bombarding atoms by electrons, and detecting the kinetic energy loss of the scattered electrons (3). Prior to the Franck-Hertz experiment, spectroscopic work bv Balmer and Rvdbere revealed that atoms emitted radiatibn at discrete ekergiis. The Franck-Hertz experiment showed directly that auantized enerm levels in an atom are real, not jist optiEal artifacts. atom can be raised to excited states by inelastic collisions with electrons as well as lowered from excited states by emission of photons. The classic Franck-Hertz experiment is carried out with mercury (4-7). Here we present an experiment for the study of resonance potentials using neon.
Resumo:
Laboratory exercises that confront students with decisive ouantum ohenomena nrovide valuable motivation for the kudy of quantum m&hanics. The idea that microscopic matter exists in quantized states can be demonstrated with modern versions of historic experiments: atomic line snectra. blackbodv radiation. and resonance potentials. In this experiment, we present a strikingly simple and visual method for determining the wavelength of spectral lines. This experiment not only shows the inadequacy of classical physics, but also indicates the power of optical measurements.
Resumo:
Potential energy curves have been computed for [C2H6]2+ ions and the results used to interpret the conspicuous absence of these ions in 2E mass spectra and in charge-stripping experiments. The energies and structures of geometry-optimized ground-state singlet and excited-state triplet [C2H6]2+ ions have been determined along with energies for different decomposition barriers and dissociation asymptotes. Although singlet and triplet [C2H6]2+ ions can exist as stable entities, they possess low energy barriers to decomposition. Vertical Franck-Condon transitions, involving electron impact ionization of ethane as well as charge-stripping collisions of [C2H6]+ ions, produce [C2H6]2+ ions which promptly dissociate since they are formed with energies in excess of various decomposition barriers. Appearance energies computed for doubly-charged ethane fragment ions are in accordance with experimental values.
Resumo:
The G2, G3, CBS-QB3, and CBS-APNO model chemistry methods and the B3LYP, B3P86, mPW1PW, and PBE1PBE density functional theory (DFT) methods have been used to calculate ΔH° and ΔG° values for ionic clusters of the ammonium ion complexed with water and ammonia. Results for the clusters NH4+(NH3)n and NH4+(H2O)n, where n = 1−4, are reported in this paper and compared against experimental values. Agreement with the experimental values for ΔH° and ΔG° for formation of NH4+(NH3)n clusters is excellent. Comparison between experiment and theory for formation of the NH4+(H2O)n clusters is quite good considering the uncertainty in the experimental values. The four DFT methods yield excellent agreement with experiment and the model chemistry methods when the aug-cc-pVTZ basis set is used for energetic calculations and the 6-31G* basis set is used for geometries and frequencies. On the basis of these results, we predict that all ions in the lower troposphere will be saturated with at least one complete first hydration shell of water molecules.
Resumo:
The GAUSSIAN 2, GAUSSIAN 3, complete basis set-QB3, and complete basis set-APNO methods have been used to calculate ΔH∘ and ΔG∘ values for ionic clusters of hydronium and hydroxide ions complexed with water. Results for the clusters H3O+(H2O)n andOH−(H2O)n, where n=1–4 are reported in this paper, and compared against experimental values contained in the National Institutes of Standards and Technology (NIST) database. Agreement with experiment is excellent for the three ab initio methods for formation of these clusters. The high accuracy of these methods makes them reliable for calculating energetics for the formation of ionic clusters containing water. In addition this allows them to serve as a valuable check on the accuracy of experimental data reported in the NIST database, and makes them useful tools for addressing unresolved issues in atmospheric chemistry.