1000 resultados para Exercise.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the effect of combined α- and β-adrenergic blockade on glucose kinetics during intense exercise. Six endurance-trained men exercised for 20 minutes at approximately 78% of their peak oxygen consumption (VO 2) following ingestion of a placebo (CON) or combined α- (prazosin hydrochloride) and β- (timolol maleate) adrenoceptor antagonists (BLK). Plasma glucose increased during exercise in CON (0 minutes: 5.5 ± 0.1; 20 minutes: 6.5 ± 0.3 mmol · L−1, P < .05). In BLK, the exercise-induced increase in plasma glucose was abolished (0 minutes: 5.7 ± 0.3; 20 minutes: 5.7 ± 0.1 mmol · L−1). Glucose kinetics were measured using a primed, continuous infusion of [6,6-2H] glucose. Glucose production was not different between trials; on average these values were 25.3 ± 3.9 and 30.9 ± 4.4 μmol · kg−1 · min−1 in CON and BLK, respectively. Glucose uptake during exercise was greater (P < .05) in BLK (30.6 ± 4.6 μmol · kg−1 · min−1) compared with CON (18.4 ± 2.5 μmol · kg−1 · min−1). In BLK, plasma insulin and catecholamines were higher (P < .05), while plasma glucagon was unchanged from CON. Free fatty acids (FFA) and glycerol were lower (P < .05) in BLK. These findings demonstrate that adrenergic blockade during intense exercise results in a blunted plasma glucose response that is due to enhanced glucose uptake, with no significant change in glucose production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the effects of alcohol intake on postexercise muscle glycogen restoration with samples from vastus lateralis being collected immediately after glycogen-depleting cycling and after a set recovery period. Six well-trained cyclists undertook a study of 8-h recovery (2 meals), and another nine cyclists undertook a separate 24-h protocol (4 meals). In each study, subjects completed three trials in crossover order: control (C) diet [meals providing carbohydrate (CHO) of 1.75 g/kg]; alcohol-displacement (A) diet (1.5 g/kg alcohol displacing CHO energy from C) and alcohol + CHO (AC) diet (C + 1.5 g/kg alcohol). Alcohol intake reduced postmeal glycemia especially in A trial and 24-h study, although insulin responses were maintained. Alcohol intake increased serum triglycerides, particularly in the 24-h study and AC trial. Glycogen storage was decreased in A diets compared with C at 8 h (24.4 ± 7 vs. 44.6 ± 6 mmol/kg wet wt, means ± SE, P < 0.05) and 24 h (68 ± 5 vs. 82 ± 5 mmol/kg wet wt, P < 0.05). There was a trend to reduced glycogen storage with AC in 8 h (36.2 ± 8 mmol/kg wet wt, P = 0.1) but no difference in 24 h (85 ± 9 mmol/kg wet wt). We conclude that 1) the direct effect of alcohol on postexercise glycogen synthesis is unclear, and 2) the main effect of alcohol intake is indirect, by displacing CHO intake from optimal recovery nutrition practices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper argues that there is an opportunity to improve the way that social science theory is taught by introducing an exercise in facilitated theory testing through active experimentation. This paper describes a learning experience that enables students to discover the dynamic nature of theoretical discoveries. This idea is grounded in the notion that students will gain much from learning about and testing theory experientially using real world data. A data based exercise is outlined and illustrated to reveal a learning experience that provides an opportunity to improve the way social science is taught by linking theory to empirical data. We argue that this provides an opportunity to offer a more holistic learning experience for theory teaching. The paper will be of special interest to those teaching theory in management, commerce, business and organisational studies courses. It will also be of interest to a more general audience because it provides a framework that can be modified whenever forging a connection between theory and 'the real world' is a primary learning objective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis: Recruitment of the protein c-Cbl to the insulin receptor (IR) and its tyrosine phosphorylation via a pathway that is independent from phosphatidylinositol 3prime-kinase is necessary for insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes. The activation of this pathway by insulin or exercise has yet to be reported in skeletal muscle. Methods: Lean and obese Zucker rats were randomly assigned to one of three treatment groups: (i) control, (ii) insulin-stimulated or (iii) acute, exhaustive exercise. Hind limb skeletal muscle was removed and the phosphorylation state of IR, Akt and c-Cbl measured.  Results:   Insulin receptor phosphorylation was increased 12-fold after insulin stimulation (p<0.0001) in lean rats and threefold in obese rats. Acute exercise had no effect on IR tyrosine phosphorylation. Similar results were found for serine phosphorylation of Akt. Exercise did not alter c-Cbl tyrosine phosphorylation in skeletal muscle of lean or obese rats. However, in contrast to previous studies in adipocytes, c-Cbl tyrosine phosphorylation was reduced after insulin treatment (p<0.001). Conclusions/interpretation: We also found that c-Cbl associating protein expression is relatively low in skeletal muscle of Zucker rats compared to 3T3-L1 adipocytes and this could account for the reduced c-Cbl tyrosine phosphorylation after insulin treatment. Interestingly, basal levels of c-Cbl tyrosine phosphorylation were higher in skeletal muscle from insulin-resistant Zucker rats (p<0.05), but the physiological relevance is not clear. We conclude that the regulation of c-Cbl phosphorylation in skeletal muscle differs from that previously reported in adipocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overexpression of GLUT4 in skeletal muscle enhances whole-body insulin action. Exercise increases GLUT4 gene and protein expression, and a binding site for the myocyte enhancer factor 2 (MEF-2) is required on the GLUT4 promoter for this response. However, the molecular mechanisms involved remain elusive. In various cell systems, MEF-2 regulation is a balance between transcriptional repression by histone deacetylases (HDACs) and transcriptional activation by the nuclear factor of activated T-cells (NFAT), peroxisome proliferator-activated receptor- coactivator 1 (PGC-1), and the p38 mitogen-activated protein kinase. The purpose of this study was to determine if these same mechanisms regulate MEF-2 in contracting human skeletal muscle. Seven subjects performed 60 min of cycling at 70% of Vo2peak. After exercise, HDAC5 was dissociated from MEF-2 and exported from the nucleus, whereas nuclear PGC-1 was associated with MEF-2. Exercise increased total and nuclear p38 phosphorylation and association with MEF-2, without changes in total or nuclear p38 protein abundance. This result was associated with p38 sequence-specific phosphorylation of MEF-2 and an increase in GLUT4 mRNA. Finally, we found no role for NFAT in MEF-2 regulation. From these data, it appears that HDAC5, PGC-1, and p38 regulate MEF-2 and could be potential targets for modulating GLUT4 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the effect of exercise on protein kinase C (PKC) activity and localization in human skeletal muscle, eight healthy men performed cycle  ergometer exercise for 40 min at 76±1% the peak pulmonary O2 uptake (VO2peak), with muscle samples obtained at rest and after 5 and 40 min of exercise. PKC expression, phosphorylation and activities were examined by immunoblotting and in vitro kinase assays of fractionated and whole tissue preparations. In response to exercise, total PKC activity was slightly higher at 40 min in an enriched membrane fraction, and using a pSer-PKC-substrate motif antibody it was revealed that exercise increased the serine phosphorylation of a ∼50 kDa protein. There were no changes in conventional PKC (cPKC) or PKCθ activities; however, atypical PKC (aPKC) activity was ∼70% higher at 5 and 40 min, and aPKC expression and Thr410/403 phosphorylation were unaltered by exercise. There were no effects of exercise on the abundance of PKCα, PKCδ, PKCθ and aPKC within cytosolic or enriched membrane fractions of skeletal muscle. These data indicate that aPKC, but not cPKC or PKCθ, are activated by exercise in contracting muscle suggesting a potential role for aPKC in the regulation of skeletal muscle function and metabolism during exercise in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key goal of pre-exercise nutritional strategies is to maximize carbohydrate stores, thereby minimizing the ergolytic effects of carbohydrate depletion. Increased dietary carbohydrate intake in the days before competition increases muscle glycogen levels and enhances exercise performance in endurance events lasting 90 min or more. Ingestion of carbohydrate 3-4 h before exercise increases liver and muscle glycogen and enhances subsequent endurance exercise performance. The effects of carbohydrate ingestion on blood glucose and free fatty acid concentrations and carbohydrate oxidation during exercise persist for at least 6 h. Although an increase in plasma insulin following carbohydrate ingestion in the hour before exercise inhibits lipolysis and liver glucose output, and can lead to transient hypoglycaemia during subsequent exercise in susceptible individuals, there is no convincing evidence that this is always associated with impaired exercise performance. However, individual experience should inform individual practice. Interventions to increase fat availability before exercise have been shown to reduce carbohydrate utilization during exercise, but do not appear to have ergogenic benefits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As muscles become larger and stronger during growth and in response to increased loading, bones should adapt by adding mass, size, and strength. In this unilateral model, we tested the hypothesis that (1) the relationship between muscle size and bone mass and geometry (nonplaying arm) would not change during different stages of puberty and (2) exercise would not alter the relationship between muscle and bone, that is, additional loading would result in a similar unit increment in both muscle and bone mass, bone size, and bending strength during growth. We studied 47 competitive female tennis players aged 8–17 years. Total, cortical, and medullary cross-sectional areas, muscle area, and the polar second moment of area (Ip) were calculated in the playing and nonplaying arms using magnetic resonance imaging (MRI); BMC was assessed by DXA. Growth effects: In the nonplaying arm in pre-, peri- and post-pubertal players, muscle area was linearly associated BMC, total and cortical area, and Ip (r = 0.56–0.81, P < 0.09 to < 0.001), independent of age. No detectable differences were found between pubertal groups for the slope of the relationship between muscle and bone traits. Post-pubertal players, however, had a higher BMC and cortical area relative to muscle area (i.e., higher intercept) than pre- and peri-pubertal players (P < 0.05 to < 0.01), independent of age; pre- and peri-pubertal players had a greater medullary area relative to muscle area than post-pubertal players (P < 0.05 to < 0.01). Exercise effects: Comparison of the side-to-side differences revealed that muscle and bone traits were 6–13% greater in the playing arm in pre-pubertal players, and did not increase with advancing maturation. In all players, the percent (and absolute) side-to-side differences in muscle area were positively correlated with the percent (and absolute) differences in BMC, total and cortical area, and Ip (r = 0.36–0.40, P < 0.05 to < 0.001). However, the side-to-side differences in muscle area only accounted for 11.8–15.9% of the variance of the differences in bone mass, bone size, and bending strength. This suggests that other factors associated with loading distinct from muscle size itself contributed to the bones adaptive response during growth. Therefore, the unifying hypothesis that larger muscles induced by exercise led to a proportional increase in bone mass, bone size, and bending strength appears to be simplistic and denies the influence of other factors in the development of bone mass and bone shape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this review, we discuss the effect of increased and decreased loading and nutrition deficiency on muscle and bone mass and strength (and bone length and architecture) independently and combined. Both exercise and nutrition are integral components of the mechanostat model but both have distinctly different roles. Mechanical strain imparted by muscle action is responsible for the development of the external size and shape of the bone and subsequently the bone strength. In contrast, immobilization during growth results in reduced growth in bone length and a loss of bone strength due to large losses in bone mass (a result of endosteal resorption in cortical bone and trabecular thinning) and changes in geometry (bone shafts do not develop their characteristic shape but rather develop a rounded default shape). The use of surrogate measures for peak muscle forces acting on bone (muscle strength, size, or mass) limits our ability to confirm a cause-and-effect relationship between peak muscle force acting on bone and changes in bone strength. However, the examples presented in this review support the notion that under adequate nutrition, exercise has the potential to increase peak muscle forces acting on bone and thus can lead to a proportional increase in bone strength. In contrast, nutrition alone does not influence muscle or bone in a dose-dependent manner. Muscle and bone are only influenced when there is nutritional deficiency – and in this case the effect is profound. Similar to immobilization, the immediate effect of malnutrition is a reduction in longitudinal growth. More specifically, protein and energy malnutrition results in massive bone loss due to endosteal resorption in cortical bone and trabecular thinning. Unlike loading however, there is indirect evidence that severe malnutrition when associated with menstrual dysfunction can shift the mechanostat set point upward, thus leading to less bone accrual for a given amount of bone strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercise increases skeletal muscle insulin action but the underlying mechanisms mediating this are equivocal. In mouse skeletal muscle, prior exercise enhances insulin-stimulated insulin receptor substrate-2 (IRS-2) signaling (Diabetes 2002;51:479-83), but it is unknown if this also occurs in humans. Hyperinsulinemic-euglycemic clamps were performed on 7 untrained males at rest and immediately after 60 minutes of cycling exercise at ~75% Vo2peak. Muscle biopsies were obtained at basal, immediately after exercise, and at 30 and 120 minutes of hyperinsulinemia. Insulin infusion increased (P < .05) insulin receptor tyrosine phosphorylation similarly in both the rest and exercise trials. Under resting conditions, insulin infusion resulted in a small, but non–statistically significant increase in IRS-2–associated phosphatidylinositol 3 (PI 3)–kinase activity over basal levels. Exercise per se decreased (P < .05) IRS-2–associated PI 3–kinase activity. After exercise, insulin-stimulated IRS-2–associated PI 3–kinase activity tended to increase at 30 minutes and further increased (P < .05) at 120 minutes when compared with the resting trial. Insulin increased (P < .05) Akt Ser473 and GSK-3α/β Ser21/Ser9 phosphorylation in both trials, with the response tending to be higher in the exercise trial. In conclusion, in the immediate period after an acute bout of exercise, insulin-stimulated IRS-2 signaling is enhanced in human skeletal muscle.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subcellular localization of insulin signaling proteins is altered by various stimuli such as insulin, insulin-like growth factor I, and oxidative stress and is thought to be an important mechanism that can influence intracellular signal transduction and cellular function. This study examined the possibility that exercise may also alter the subcellular localization of insulin signaling proteins in human skeletal muscle. Nine untrained males performed 60 min of cycling exercise (~67% peak pulmonary O2 uptake). Muscle biopsies were sampled at rest, immediately after exercise, and 3 h postexercise. Muscle was fractionated by centrifugation into the following crude fractions: cytosolic, nuclear, and a high-speed pellet containing membrane and cytoskeletal components. Fractions were analyzed for protein content of insulin receptor, insulin receptor substrate (IRS)-1 and -2, p85 subunit of phosphatidylinositol 3-kinase, Akt, and glycogen synthase kinase-3 (GSK-3). There was no significant change in the protein content of the insulin signaling proteins in any of the crude fractions after exercise or 3 h postexercise. Exercise had no significant effect on the phosphorylation of IRS-1 Tyr612 in any of the fractions. In contrast, exercise increased (P < 0.05) the phosphorylation of Akt Ser473 and GSK-3α/ß Ser9/21 in the cytosolic fraction only. In conclusion, exercise can increase phosphorylation of downstream insulin signaling proteins specifically in the cytosolic fraction but does not result in changes in the subcellular localization of insulin signaling proteins in human skeletal muscle. Change in the subcellular protein localization is therefore an unlikely mechanism to influence signal transduction pathways and cellular function in skeletal muscle after exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To examine the influence of exercise intensity on the increases in vastus lateralis GLUT4 mRNA and protein after exercise, six untrained men exercised for 60 min at 39 ± 3% peak oxygen consumption (VO2 peak) (Lo) or 27 ± 2 min at 83 ± 2% VO2 peak (Hi) in counterbalanced order. Preexercise muscle glycogen levels were not different between trials (Lo: 408 ± 35 mmol/kg dry mass; Hi: 420 ± 43 mmol/kg dry mass); however, postexercise levels were lower (P < 0.05) in Hi (169 ± 18 mmol/kg dry mass) compared with Lo (262 ± 35 mmol/kg dry mass). Thus calculated muscle glycogen utilization was greater (P < 0.05) in Hi (251 ± 24 mmol/kg) than in Lo (146 ± 34). Exercise resulted in similar increases in GLUT4 gene expression in both trials. GLUT4 mRNA was increased immediately at the end of exercise (~2-fold; P < 0.05) and remained elevated after 3 h of postexercise recovery. When measured 3 h after exercise, total crude membrane GLUT4 protein levels were 106% higher in Lo (3.3 ± 0.7 vs. 1.6 ± 0.3 arbitrary units) and 61% higher in Hi (2.9 ± 0.5 vs. 1.8 ± 0.5 arbitrary units) relative to preexercise levels. A main effect for exercise was observed, with no significant differences between trials. In conclusion, exercise at ~40 and ~80% VO2 peak, with total work equal, increased GLUT4 mRNA and GLUT4 protein in human skeletal muscle to a similar extent, despite differences in exercise intensity and duration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercise dependence (EXD) is a psychological condition associated with physical, emotional, social and performance consequences. Despite growing awareness of the prevalence of EXD within the athletic population, the symptoms or dimensions that comprise the condition largely remain unclear. The aim of the present study was to examine the perceptions of coaches relating to the symptoms or dimensions that define EXD among athletes. Participants were 90 coaches of elite athletes employed by the Australian Institute of Sport and State Institutes of Sport in Australia. Coaches completed an EXD checklist and a separate checklist of characteristics of committed exercisers. Both checklists contained 31 dimensions. The results supported a constellation of cognitive, emotional, behavioral, physical, social and performance dimensions. The results are discussed in terms of the consequences of EXD for elite athletes. Implications for coaches and teammates of elite athletes who experience EXD are also highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To pilot-test a brief written prescription recommending lifestyle changes delivered by general practitioners (GPs) to their patients.

Design The Active Nutrition Script (ANS) included five nutrition messages and personalised exercise advice for a healthy lifestyle and/or the prevention of weight gain. GPs were asked to administer 10 scripts over 4 weeks to 10 adult patients with a body mass index (BMI) of between 23 and 30 kg m− 2. Information recorded on the script consisted of patients' weight, height, waist circumference, gender and date of birth, type and frequency of physical activity prescribed, and the selected nutrition messages. GPs also recorded reasons for administering the script. Interviews recorded GPs views on using the script.

Setting General practices located across greater Melbourne.

Subjects and results
Nineteen GPs (63% female) provided a median of nine scripts over 4 weeks. Scripts were administered to 145 patients (mean age: 54 ± 13.2 years, mean BMI: 31.7 ± 6.3 kg m− 2; 57% female), 52% of whom were classified as obese (BMI >30 kg m− 2). GPs cited ‘weight reduction’ as a reason for writing the script for 78% of patients. All interviewed GPs (90%, n = 17) indicated that the messages were clear and simple to deliver.

Conclusions
GPs found the ANS provided clear nutrition messages that were simple to deliver. However, GPs administered the script to obese patients for weight loss rather than to prevent weight gain among the target group. This has important implications for future health promotion interventions designed for general practice.