981 resultados para Euclidean sphere


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BaF2 nanocrystals doped with 5.0 mol% Eu3+ has been successfully synthesized via a facile, quick and efficient ultrasonic solution route employing the reactions between Ba(NO3)(2), Eu(NO3)(3) and KBF4 under ambient conditions. The product was characterized via X-ray powder diffraction (XRD), scanning electron micrographs (SEM), transmission electron microscopy (TEM), high-resolution transmission electron micrographs (HRTEM), selected area electron diffraction (SAED) and photoluminescence (PL) spectra. The ultrasonic irradiation has a strong effect on the morphology of the BaF2:Eu3+ particles. The caddice-sphere-like particles with an average diameter of 250 nm could be obtained with ultrasonic irradiation, whereas only olive-like particles were produced without ultrasonic irradiation. The results of XRD indicate that the obtained BaF2:Eu3+ nanospheres crystallized well with a cubic structure. The PL spectrum shows that the BaF2:Eu3+ nanospheres has the characteristic emission of Eu3+ D-5(0)-F-7(J) (J = 1-4) transitions, with the magnetic dipole D-5(0)-F-7(1) allowed transition (590 nm) being the most prominent emission line.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

0-3 connectivity piezoelectric composites lead zirconate titanate(PZT)/polyvinylidene fluoride(PVDF) were prepared. Crystallininity and microstructure of the samples were characterized by SEM, FTIR and WAXD. The results indicated that the PZT powder was blended with non-crystalline phase of PVDF. The composites presented different net-morphology. PVDF existed as g crystalline phase in the composites. The composites presented island type structure with low content of PZT and hard sphere stack in irregular type with high content of PZT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ultrathin multilayer films of sphere-shaped polyoxomolybdate Mo8V2O28.7H(2)O (abbreviated to Mo8V2) and poly(allylamine hydrochloride) (DAH) have been prepared by the layer-by-layer (LbL) self-assembly method. The (Mo8V2/DAH)(m) multilayer films have been characterized by X-ray photoelectron spectra (XPS) and atomic force microscopy (AFM). The electrochemistry behavior of the film at room temperature was investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metallocene complex (Cp2ZrCl2)-Zr-tt (Cp-tt = eta(5)-1,3-(Bu2C5H3)-Bu-t) (1) has been prepared from the reaction of LiCptt with ZrCl4 in good yield. Reactions of 1 with dilithium dichalcogenolate o-carboranes afforded new type of half-sandwich compounds with dichalcogenolate o-carboranyl ligands [Li(THF)(4)][(CpZr)-Zr-tt(E2C2B10H10)(2)] (E = S, 2a; E = Se, 2b) in which only one cyclopentadienyl ring ligand existed. Complexes 1 and 2a were structurally characterized by X-ray analyses. In complex 2a, the Zr(IV) ion is eta(5)-bound to one 1,3-di-tert-cyclopentadienyl ring and a-bound to four mu(2)-sulfur atoms of two dithio-carboranes. The zirconium atom and four sulfur atoms form a distorted pyramid. The coordination sphere around the zirconium atom resembles in a piano stool structure with four legs of sulfur atoms and the fulcrum at the zirconium atom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the inverted phase formation and the transition from inverted to normal phase for a cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer in solution-cast films with thickness about 300 nm during the process of the solution concentrating by slow solvent evaporation. The cast solvent is 1, 1,2,2-tetrachloroethane (Tetra-CE), a good solvent for both blocks but having preferential affinity for the minority PMMA block. During such solution concentrating process, the phase behavior was examined by freeze-drying the samples at different evaporation time, corresponding to at different block copolymer concentrations, phi. As phi increases from similar to 0.1 % (nu/nu), the phase structure evolved from the disordered sphere phase (DS), consisting of random arranged spheres with the majority PS block as I core and the minority PMMA block as a corona, to ordered inverted phases including inverted spheres (IS), inverted cylinders (IC), and inverted hexagonally perforated lamellae (IHPL) with the minority PMMA block comprising the continuum phase, and then to the lamellar (LAM) phase with alternate layers of the two blocks, and finally to the normal cylinder (NC) phase with the majority PS block comprising the continuum phase. The solvent nature and the copolymer solution concentration are shown to be mainly responsible for the inverted phase formation and the phase transition process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work a nonmonotonic dependence of standard rate constant (k(0)) on reorganization energy (lambda) was discovered qualitatively from electron transfer (Marcus-Hush-Levich) theory for heterogeneous electron transfer processes on electrode surface. It was found that the nonmonotonic dependence of k(0) on lambda is another result, besides the disappearance of the famous Marcus inverted region, coming from the continuum of electronic states in electrode: with the increase of lambda, the states for both Process I and Process II ET processes all vary from nonadiabatic to adiabatic state continuously, and the lambda dependence of k(0) for Process I is monotonic thoroughly, while for Process II on electrode surface the lambda dependence of k(0) could show a nonmonotonicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the multiple morphologies and their transformation of polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) in low-alkanol solvents. In order to improve the solubility of polystyrene block in alcohol solvents, the solution of block copolymer sample was treated at a higher temperature, and then the influence of rate of decreasing temperature on multiple morphologies (including spheres, rods, vesicles, porous vesicles, large compound vesicles, and large compound micelles) was observed. The transformation of spheres to rods, to tyre-shaped large compound micelles, and to sphere-shaped large compound micelles was also realized. The formation mechanisms of the multiple morphologies and their transformation are discussed briefly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A polymeric supramolecule consisting of symmetric polystyrene-block-poly(4-vinylpytidine) (PS-b-P4VP), dodecylbenzenesulfonic acid (DBSA), and 3-pentadecylphenol (PDP) was formed by proton transfer and hydrogen bonding. The surface morphology,of a thin film of the polymeric supramolecule has been investigated. The spherical PS microdomains embedded in a P4VP(DBSA)(1.0)(PDP)(1.0) matrix are observed for the as-cast film because the weight fraction, f(comb), of the P4VP(DBSA) (1.0)(PDP)(1.0) blocks is much higher than that of PS as a result of the non-covalent interactions of P4VP and DBSA and DBSA and PDR Upon annealing the PS-b-P4VP(1:1)(DBSA)(1.0)(PDP)(1.0) film at high temperatures, the hydrogen bonding between the DBSA and PDP diminishes, which leads to a change of overall morphology from an ordered sphere to a pitted structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a previous study, we reported observation of the novel inverted phase (the minority blocks comprising the continuum phase) in kinetically controlled phase separating solution-cast poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymer films [Zhang et al. Macromolecules 2000, 33, 9561-7]. In this study, we adopt the same approach to investigate the formation of inverted phase in a series of solution-cast poly(styrene-b-butadiene) (SB) asymmetric diblock copolymers having nearly equal polystyrene (PS) weight fraction (about 30 wt %) but different molecular weights. The microstructure of the solution-cast block copolymer films resulting from different solvent evaporation rates, R, was inspected, from which the kinetically frozen-in phase structures at qualitatively different block copolymer concentrations and correspondingly different effective interaction parameter, chieff, can be deduced. Our result shows that there is a threshold molecular weight or range of molecular weight below which the unusual inverted phase is accessible by controlling the solvent evaporation rate. In comparing the present result with that of our previous study on the SBS triblock copolymer, we find that the formation of the inverted phase has little bearing on the chain architecture. We performed numerical calculations for the free energy of block copolymer cylinders and found that the normal phase is always preferred irrespective of the interaction parameter and molecular weight, which suggests the formation of the inverted phase to have a kinetic origin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on Takayanagi's two-phase model, a three-phase model including the matrix, interfacial region, and fillers is proposed to calculate the tensile modulus of polymer nanocomposites (E-c). In this model, fillers (sphere-, cylinder- or plate-shape) are randomly distributed in a matrix. If the particulate size is in the range of nanometers, the interfacial region will play an important role in the modulus of the composites. Important system parameters include the dispersed particle size (t), shape, thickness of the interfacial region (tau), particulate-to-matrix modulus ratio (E-d/E-m), and a parameter (k) describing a linear gradient change in modulus between the matrix and the surface of particle on the modulus of nanocomposites (E-c). The effects of these parameters are discussed using theoretical calculation and nylon 6/montmorillonite nanocomposite experiments. The former three factors exhibit dominant influence on E-c At a fixed volume fraction of the dispersed phase, smaller particles provide an increasing modulus for the resulting composite, as compared to the larger one because the interfacial region greatly affects E-c. Moreover, since the size of fillers is in the scale of micrometers, the influence of interfacial region is neglected and the deduced equation is reduced to Takayanagi's model. The curves predicted by the three-phase model are in good agreement with experimental results. The percolation concept and theory are also applied to analyze and interpret the experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of muffin-tin approximation on energy band gap was studied using LMTO-ASA (Linear Muffin-Tin Orbital-Atomic Sphere Approximation) approach. Since the diverse data are available for LaX(X=N, P, As, Sb), they are presented in our research as an example in order to test the reliability of our results. Four groups of muffin-tin radii were chosen, they were the fitted muffin-tin radii based on the optical properties of the crystals (the first), 1 : 1 for La : X(the second), 1.5 : 1 for La : X(the third), and a group of radii derived by making the charge in the interstitial space to be zero(the fourth). The results show that the fitted muffin-tin radii (the first group) give the best results compared with experimental values, and the predicted energy band gaps are very sensitive to the choice of muffin-tin radius in comparison with the other groups. The second and the third delivered results somewhere in between, while the fourth provided the worst results compared with the other groups. For the same crystal, with the increase of muffin-tin radius of lanthanum, the calculated energy band gaps decreased, going from semi-conductor to semimetal. This again clearly indicated the sensitivity of energy band structure on muffin-tin approximation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immobilization of protein molecules is a fundamental problem for scanning tunnelling microscopy (STM) measurements with high resolution. In this paper, an electrochemical method has been proved to be an effective way to fix native horseradish peroxidase (HRP) as well as inactivated HRP from electrolyte onto a highly oriented pyrolytic graphite (HOPG) surface. This preparation is suitable for both ex situ and in situ electrochemical STM (ECSTM) measurements. In situ STM has been successfully employed to observe totally different structures of HRP in three typical cases: (1) in situ ECSTM reveals an oval-shaped pattern for a single molecule in neutral buffer solution, which is in good agreement with the dimension determined as 6.2 x 4.3 x 1.2. nm(3) by ex situ STM for native HRP; (2) in situ ECSTM shows that the adsorbed HRP molecules on HOPG in a denatured environment exhibit swelling globes at the beginning and then change into a V-shaped pattern after 30 min; (3) in situ ECSTM reveals a black hole in every ellipsoidal sphere for inactivated HRP in strong alkali solution. The cyclic voltammetry results indicate that the adsorbed native HRP can directly catalyse the reduction of hydrogen peroxide, demonstrating that a direct electron transfer reduction occurred between the enzyme and HOPG electrode, whereas the corresponding cyclic voltammograms for denatured HRP and inactivated HRP adsorbed on HOPG electrodes indicate a lack of ability to catalyse H2O2 reduction, which confirms that the HRP molecules lost their biological activity. Obviously, electrochemical results powerfully support in situ STM observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bioinorganic complexes of europium with N-acetyl-DL-alanine, N-acetyl-DL-valine, and DL-alanyl-DL-alanine have been synthesized and the Mossbauer spectra at room temperature have been measured for these solid state complexes. The Mossbauer parameters indicate that the water molecules in these complexes are not directly linked to the central europium ion and are outside the coordination sphere of europium and biological ligands, and that the chemical bond between the europium ion and the ligands may be predominantly ionic in character, with the possibility of partial covalent contribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the effective medium approximation theory of composites, a remedial model is proposed for estimating the microwave emissivity of sea surface under wave breaking driven by strong wind on the basis of an empirical model given by Pandey and Kakar. In our model, the effects of the shapes of seawater droplets and the thickness of whitecap layer (i.e. a composite layer of air and sea water droplets) over the sea surface on the microwave emissivity are investigated by calculating the effective dielectric constant of whitecaps layer. The wind speed is included in our model, and the responses of water droplets shapes, such as sphere and ellipsoid, to the emissivity are also discussed at different microwave frequencies. The model is in good agreement with the experimental data of microwave emissivity of sea surface at microwave frequencies of 6.6, 10.7 and 37GHz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A graded piezoelectric composite consisting of a spherically anisotropic graded piezoelectric inclusion imbedded in an infinite nonpiezoelectric matrix, with the physical properties of the graded spherical inclusion having a power-law profile with respect to the radial variable r, is studied theoretically. Under an external uniform electric field, the electric displacement field and the elastic stress tensor field of this spherically anisotropic graded piezoelectric composite are derived exactly by means of displacement separation technique, based on the governing equations in the dilute limit. A piezoelectric response mechanism, in which the effective piezoelectric response vanishes along the z direction (or x,y directions), is revealed in this kind of graded piezoelectric composites. Furthermore, it is found that the effective dielectric constant decreases (or increases) with the volume fraction p of the inclusions if the exponent parameter k of the grading profile is larger (or smaller) than a critical value. (C) 2007 American Institute of Physics.