973 resultados para Equatorial
Resumo:
The effect of the ionosphere on the signals of Global Navigation Satellite Systems (GNSS), such as the Global Positionig System (GPS) and the proposed European Galileo, is dependent on the ionospheric electron density, given by its Total Electron Content (TEC). Ionospheric time-varying density irregularities may cause scintillations, which are fluctuations in phase and amplitude of the signals. Scintillations occur more often at equatorial and high latitudes. They can degrade navigation and positioning accuracy and may cause loss of signal tracking, disrupting safety-critical applications, such as marine navigation and civil aviation. This paper addresses the results of initial research carried out on two fronts that are relevant to GNSS users if they are to counter ionospheric scintillations, i.e. forecasting and mitigating their effects. On the forecasting front, the dynamics of scintillation occurrence were analysed during the severe ionospheric storm that took place on the evening of 30 October 2003, using data from a network of GPS Ionospheric Scintillation and TEC Monitor (GISTM) receivers set up in Northern Europe. Previous results [1] indicated that GPS scintillations in that region can originate from ionospheric plasma structures from the American sector. In this paper we describe experiments that enabled confirmation of those findings. On the mitigation front we used the variance of the output error of the GPS receiver DLL (Delay Locked Loop) to modify the least squares stochastic model applied by an ordinary receiver to compute position. This error was modelled according to [2], as a function of the S4 amplitude scintillation index measured by the GISTM receivers. An improvement of up to 21% in relative positioning accuracy was achieved with this technnique.
Resumo:
Equatorial F region vertical plasma drifts, spread F and anomaly responses, in the south American longitude sector during the superstorm of 30 October 2003, are analyzed using data from an array of instruments consisting of Digisondes, a VHF radar, GPS TEC and scintillation receivers in Brazil, and a Digisonde and a magnetometer in Jicamarca, Peru. Prompt penetrating eastward electric field of abnormally large intensity drove the F layer plasma up at a velocity ∼1200 ms -1 during post dusk hours in the eastern sector over Brazil. The equatorial anomaly was intensified and expanded poleward while the development of spread F/plasma bubble irregularities and GPS signal scintillations were weaker than their quiet time intensity. Significantly weaker F region response over Jicamarca presented a striking difference in the intensity of prompt penetration electric field between Peru and eastern longitudes of Brazil. The enhanced post dusk sector vertical drift over Brazil is attributed to electro-dynamics effects arising energetic particle precipitation in the South Atlantic Magnetic Anomaly (SAMA). These extraordinary results and their longitudinal differences are presented and discussed in this paper. Copyright 2008 by the American Geophysical Union.
Resumo:
In the present work it is presented a semi-analytical and a numerical study of the perturbation caused in a spacecraft by a third body using a double averaged analytical model with the disturbing function expanded in Legendre polynomials up to the second-order. The important reason for this procedure is to eliminate the terms due to the short time periodic motion of the spacecraft and to show smooth curves for the evolution of the mean orbital elements for a long time period. The aim of this study is to calculate the effect of lunar perturbations on the orbits of spacecrafts that are traveling around the Earth. It is presented an analysis of the stability of a near-circular orbit and a study to know under which conditions this orbit remains near-circular. A study of the equatorial orbits is also performed.
Resumo:
Some orbital characteristics of lunar artificial satellites is presented taking into account the perturbation of the third-body in elliptical orbit and the non-uniform distribution of mass of the Moon. We consider the development of the non-sphericity of the Moon in zonal spherical harmonics up to the ninth order and sectorial harmonic C 22 due to the lunar equatorial ellipticity. The motion of the artificial satellite is studied under the single-averaged analytical model. The average is applied to the mean anomaly of the satellite to analyze low-altitude orbits which are of highest importance for future lunar missions. We found families of frozen orbits with long lifetimes for the problem of an orbiter travelling around the Moon.
Resumo:
The upcoming solar maximum, which is expected to reach its peak around May 2013, occurs at a time when our reliance on high-precision GNSS has reached unprecedented proportions. The perturbations of the ionosphere caused by increased solar activity pose a major threat to these applications. This is particularly true in equatorial regions where high exposure to solar-induced disturbances is coupled with explosive growth of precise GNSS applications. Along with the various types of solar-induced ionospheric disturbances, strong scintillations are amongst the most challenging, causing phase measurement errors up to full losses of lock for several satellites. Brazil, which heavily relies on high-precision GNSS, is one of the most affected regions due notably to the proximity to the southern crest of the ionospheric equatorial anomaly and to the South Atlantic Magnetic Anomaly. In the framework of the CIGALA project, we developed the PolaRxS™, a GNSS receiver dedicated to the monitoring of ionospheric scintillation indices not only in the GPS L1 band but for all operational and upcoming constellations and frequency bands. A network of these receivers was deployed across the whole Brazilian territory in order to first investigate and secondly to mitigate the impact of scintillation on the different signals, ensuring high precision GNSS availability and integrity in the area. This paper reports on the validation of the PolaRxS™ receiver as an ionospheric scintillation monitor and the first results of the analysis of the data collected with the CIGALA network.
Resumo:
An analytical approach for spin stabilized attitude propagation is presented, considering the coupled effect of the aerodynamic torque and the gravity gradient torque. A spherical coordination system fixed in the satellite is used to locate the satellite spin axis in relation to the terrestrial equatorial system. The spin axis direction is specified by its right ascension and the declination angles and the equation of motion are described by these two angles and the magnitude of the spin velocity. An analytical averaging method is applied to obtain the mean torques over an orbital period. To compute the average components of both aerodynamic torque and the gravity gradient torque in the satellite body frame reference system, an average time in the fast varying orbit element, the mean anomaly, is utilized. Afterwards, the inclusion of such torques on the rotational motion differential equations of spin stabilized satellites yields conditions to derive an analytical solution. The pointing deviation evolution, that is, the deviation between the actual spin axis and the computed spin axis, is also availed. In order to validate the analytical approach, the theory developed has been applied for spin stabilized Brazilian satellite SCD1, which are quite appropriated for verification and comparison of the data generated and processed by the Satellite Control Center of the Brazil National Research Institute (INPE). Numerical simulations performed with data of Brazilian Satellite SCD1 show the period that the analytical solution can be used to the attitude propagation, within the dispersion range of the attitude determination system performance of Satellite Control Center of the Brazilian Research Institute.
Resumo:
The effects of shading and water sprinkling on physiological responses and milk production were studied in Holstein cows managed in an equatorial semi-arid region. Five cows were observed for 36 days during May and June 2009. We studied the effects of sun, shade, shade plus single sprinkling, shade plus sprinkling every 2. h and shade plus sprinkling every hour on physiological responses, i.e., rectal temperature, coat surface temperature and respiratory rate, and on milk production. Environmental variables, i.e., air temperature, black globe temperature, mean radiant temperature, relative humidity and wind speed, were recorded every 30. min throughout the observation period. The statistical analysis utilized a 5×5 replicated latin square, and the results showed reduced values in physiological variables in cows that were protected from short wave radiation and that received water sprinkling; milk yield increased by approximately 3.5. kg in such animals relative to those not receiving such treatment. However, the milk yield for the morning milking presented similar mean values regardless of whether the animals received shading and sprinkling benefits, which indicates that frequency of sprinkling and amount of time (permanence) in the shade were critical for the effect on milk yield. © 2013 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)