999 resultados para Equations, Quadratic.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the effective action for quantum electrodynamics (QED) in D=2,3 dimensions at the quadratic approximation in the gauge fields. We analyze the analytic structure of the corresponding nonlocal boson propagators nonperturbatively in k/m. In two dimensions for any nonzero fermion mass, we end up with one massless pole for the gauge boson. We also calculate in D=2 the effective potential between two static charges separated by a distance L and find it to be a linearly increasing function of L in agreement with the bosonized theory (massive sine-Gordon model). In three dimensions we find nonperturbatively in k/m one massive pole in the effective bosonic action leading to screening. Fitting the numerical results we derive a simple expression for the functional dependence of the boson mass upon the dimensionless parameter e2/m. ©2000 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A strict proof of the equivalence of the Duffin-Kemmer-Petiau and Klein-Gordon Fock theories is presented for physical S-matrix elements in the case of charged scalar particles minimally interacting with an external or quantized electromagnetic field. The Hamiltonian canonical approach to the Duffin - Kemmer Petiau theory is first developed in both the component and the matrix form. The theory is then quantized through the construction of the generating functional for the Green's functions, and the physical matrix elements of the S-matrix are proved to be relativistic invariants. The equivalence of the two theories is then proved for the matrix elements of the scattered scalar particles using the reduction formulas of Lehmann, Symanzik, and Zimmermann and for the many-photon Green's functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of existence and uniqueness of polynomial solutions of the Lamé differential equation A(x)y″ + 2B(x)y′ + C(x)y = 0, where A(x),B(x) and C(x) are polynomials of degree p + 1,p and p - 1, is under discussion. We concentrate on the case when A(x) has only real zeros aj and, in contrast to a classical result of Heine and Stieltjes which concerns the case of positive coefficients rj in the partial fraction decomposition B(x)/A(x) = ∑j p=0 rj/(x - aj), we allow the presence of both positive and negative coefficients rj. The corresponding electrostatic interpretation of the zeros of the solution y(x) as points of equilibrium in an electrostatic field generated by charges rj at aj is given. As an application we prove that the zeros of the Gegenbauer-Laurent polynomials are the points of unique equilibrium in a field generated by two positive and two negative charges. © 2000 American Mathematical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose new classes of linear codes over integer rings of quadratic extensions of Q, the field of rational numbers. The codes are considered with respect to a Mannheim metric, which is a Manhattan metric modulo a two-dimensional (2-D) grid. In particular, codes over Gaussian integers and Eisenstein-Jacobi integers are extensively studied. Decoding algorithms are proposed for these codes when up to two coordinates of a transmitted code vector are affected by errors of arbitrary Mannheim weight. Moreover, we show that the proposed codes are maximum-distance separable (MDS), with respect to the Hamming distance. The practical interest in such Mannheim-metric codes is their use in coded modulation schemes based on quadrature amplitude modulation (QAM)-type constellations, for which neither the Hamming nor the Lee metric is appropriate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We apply a five-dimensional formulation of Galilean covariance to construct non-relativistic Bhabha first-order wave equations which, depending on the representation, correspond either to the well known Dirac equation (for particles with spin 1/2) or the Duffin-Kemmer-Petiau equation (for spinless and spin 1 particles). Here the irreducible representations belong to the Lie algebra of the 'de Sitter group' in 4 + 1 dimensions, SO(5, 1). Using this approach, the non-relativistic limits of the corresponding equations are obtained directly, without taking any low-velocity approximation. As a simple illustration, we discuss the harmonic oscillator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We apply the Bogoliubov Averaging Method to the study of the vibrations of an elastic foundation, forced by a Non-ideal energy source. The considered model consists of a portal plane frame with quadratic nonlinearities, with internal resonance 1:2, supporting a direct current motor with limited power. The non-ideal excitation is in primary resonance in the order of one-half with the second mode frequency. The results of the averaging method, plotted in time evolution curve and phase diagrams are compared to those obtained by numerically integrating of the original differential equations. The presence of the saturation phenomenon is verified by analytical procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a series solution is found for the integro-differential equation y″ (t) = -(ω2 c + ω2 f sin2 ωpt)y(t) + ωf (sin ωpt) z′ (0) + ω2 fωp sin ωpt ∫t 0 (cos ωps) y(s)ds, which describes the charged particle motion for certain configurations of oscillating magnetic fields. As an interesting feature, the terms of the solution are related to distinct sequences of prime numbers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of a bright matter wave soliton in a quasi one-dimensional Bose-Einstein condensate (BEC) with a periodically rapidly varying time trap is considered. The governing equation is based on averaging the fast modulations of the Gross-Pitaevskii (GP) equation. This equation has the form of a GP equation with an effective potential of a more complicated structure than an unperturbed trap. In the case of an inverted (expulsive) quadratic trap corresponding to an unstable GP equation, the effective potential can be stable. For the bounded space trap potential it is showed that bifurcation exists, i.e. the single-well potential bifurcates to the triple-well effective potential. The stabilization of a BEC cloud on-site state in the temporary modulated optical lattice is found. This phenomenon is analogous to the Kapitza stabilization of an inverted pendulum. The analytical predictions of the averaged GP equation are confirmed by numerical simulations of the full GP equation with rapid perturbations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a Finite Element Method treatment is outlined for the equations of Magnetoaerodynamics. In order to provide a good basis for numerical treatment of Magneto-aerodynamics, a full version of the complete equations is presented and FEM contribution matrices are deduced, as well as further terms of stabilization for the compressible flow case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supersymmetry is formulated for integrable models based on the sl(2 1) loop algebra endowed with a principal gradation. The symmetry transformations which have half-integer grades generate supersymmetry. The sl(2 1) loop algebra leads to N=2 supersymmetric mKdV and sinh-Gordon equations. The corresponding N=1 mKdV and sinh-Gordon equations are obtained via reduction induced by twisted automorphism. Our method allows for a description of a non-local symmetry structure of supersymmetric integrable models. © 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quadratic gravity in (2+1)D is nonunitarity at the tree level. When a topological Chern-Simons term is added to this theory, the harmless massive scalar mode of the former gives rise to a troublesome massive spin-0 ghost, while the massive spin-2 ghost is replaced by two massive physical particles both of spin-2. Therefore, unlike what it is claimed in the literature, quadratic Chern-Simons gravity in (2+1)D is nonunitary at the tree level. © 2004 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalized relativistic harmonic oscillator for spin 1/2 particles is studied. The Dirac Hamiltonian contains a scalar S and a vector V quadratic potentials in the radial coordinate, as well as a tensor potential U linear in r. Setting either or both combinations Σ=5+V and δ=V-S to zero, analytical solutions for bound states of the corresponding Dirac equations are found. The eigenenergies and wave functions are presented and particular cases are discussed, devoting a special attention to the nonrelativistic limit and the case Σ=0, for which pseudospin symmetry is exact. We also show that the case U=δ=0 is the most natural generalization of the nonrelativistic harmonic oscillator. The radial node structure of the Dirac spinor is studied for several combinations of harmonic-oscillator potentials, and that study allows us to explain why nuclear intruder levels cannot be described in the framework of the relativistic harmonic oscillator in the pseudospin limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study numerically the Schwinger-Dyson equations for the coupled system of gluon and ghost propagators in the Landau gauge and in the case of pure gauge QCD. We show that a dynamical mass for the gluon propagator arises as a solution while the ghost propagator develops an enhanced behavior in the infrared regime of QCD. Simple analytical expressions are proposed for the propagators, and the mass dependency on the ΛQCD scale and its perturbative scaling are studied. We discuss the implications of our results for the infrared behavior of the coupling constant, which, according to fits for the propagators infrared behavior, seems to indicate that α s(q2) → 0 as q2 → 0. © SISSA/ISAS 2004.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with a stochastic optimal control problem involving discrete-time jump Markov linear systems. The jumps or changes between the system operation modes evolve according to an underlying Markov chain. In the model studied, the problem horizon is defined by a stopping time τ which represents either, the occurrence of a fix number N of failures or repairs (TN), or the occurrence of a crucial failure event (τΔ), after which the system is brought to a halt for maintenance. In addition, an intermediary mixed case for which T represents the minimum between TN and τΔ is also considered. These stopping times coincide with some of the jump times of the Markov state and the information available allows the reconfiguration of the control action at each jump time, in the form of a linear feedback gain. The solution for the linear quadratic problem with complete Markov state observation is presented. The solution is given in terms of recursions of a set of algebraic Riccati equations (ARE) or a coupled set of algebraic Riccati equation (CARE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the solutions obtained for the gluon propagador in Landau gauge within two distinct approximations for the Schwinger-Dyson equations (SDE). The first, named Mandelstam's approximation, consist in neglecting all contributions that come from fermions and ghosts fields while in the second, the ghosts fields are taken into account leading to a coupled system of integral equations. In both cases we show that a dynamical mass for the gluon propagator can arise as a solution. © 2005 American Institute of Physics.