990 resultados para Equação biharmônica
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigate in this work the behaviour of the decay to the fixed points, in particular along the bifurcations, for a family of one-dimensional logistic-like discrete mappings. We start with the logistic map focusing in the transcritical bifurcation. Next we investigate the convergence to the stationary state at the cubic map. At the end we generalise the procedure for a mapping of the logistic-like type. Near the fixed point, the dynamical variable varies slowly. This property allows us to approximate/rewrite the equation of differences, hence natural from discrete mappings, into an ordinary differential equation. We then solve such equation which furnishes the evolution towards the stationary state. Our numerical simulations confirm the theoretical results validating the above mentioned approximation
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Ciência Florestal - FCA
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - IFT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A partir do conceito de integrais de Mellin-Barnes, apresentamos afunção de Fox e algumas de suas propriedades a fim de discutir aequação diferencialfracionária associada ao problema do telégrafo.Palavras-chave.
Resumo:
In the mid-nineteenth century, french mathematicians Briot and Bouquet have proposed an intriguing graphical method for solving cubic equations "depressed" - the third degree equations that do not have the quadratic term. The proposal is simple geometric construction, though based on an ingenious algebra. We propose here the verification and testing graphical method through an instructional sequence using the software GeoGebra also present the ingenious algebraic development that resulted in this graphic method for determination of real roots of a cubic equation of the type x³ + px + q = 0 where p and q are real numbers. The method states that these solutions are summarized in the abscissas of the points of intersection of the circumference containing the origin and the center C (-q/2, 1-p/2) with the parable y = x².
Resumo:
In order to refine the solution given by the classical logistic equation and extend its range of applications in the study of tumor dynamics, we propose and solve a generalization of this equation, using the so-called Fractional Calculus, i.e., we replace the ordinary derivative of order 1, in one version of the usual equation, by a non-integer derivative of order 0 < α < 1, and recover the classical solution as a particular case. Finally, we analyze the applicability of this model to describe the growth of cancer tumors.