964 resultados para Envelhecimento - Aging
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
As doenças que afetam o sistema músculo-esquelético acometem centenas de milhões de pessoas no mundo e estão entre as causas mais comuns de invalidez e sofrimento crônico. A doença vertebral degenerativa constitui uma exacerbação do processo de envelhecimento, podendo estar envolvidos os fatores genéticos, ambientais ou lesões traumáticas, deformidades e doenças preexistentes. Muito se tem discutido sobre os múltiplos fatores envolvidos na degeneração discal, mas sua etiologia permanece indeterminada. Contudo, atualmente a participação da genética parece muito mais forte do que se suspeitava anteriormente. Neste artigo, é abordada a participação de alguns genes no processo discogênico, bem como o que isso representa para o melhor entendimento da etiopatogênese da doença e na melhora de seu tratamento.
Resumo:
O objetivo deste estudo foi avaliar o perfil e conhecimento sobre saúde bucal de profissionais cuidadores de idosos, que atuam em três asilos da cidade de Araçatuba. Foram entrevistados 18 cuidadores de três instituições, com o auxílio de um formulário, visando avaliar o grau de conhecimento destes quanto aos aspectos de saúde bucal. em relação à formação escolar, 83,3% desses profissionais possuem curso técnico de auxiliar de enfermagem e 16,7% não apresentam qualquer tipo de formação técnica. Mais da metade dos entrevistados (61,11%) relatou ter iniciado o trabalho por necessidade, não por afinidade. Quanto ao conhecimento em saúde bucal, detectou-se carência de informações, sendo que a maior parte necessita de esclarecimento quanto aos problemas mais prevalentes que ocorrem na boca e muitos deles (55,56%) acreditam que a perda dos dentes faz parte do envelhecimento. Constatou-se que os cuidadores precisam ser informados sobre aspectos de saúde bucal voltados para idosos.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work presents a new route of preparation of zirconium ceramic foams based on the thermostimulated sol-gel process. This method produces gelled bodies with up to 90% of porosity in the wet gel and can be used to make complex-shaped components. Unfortunately, the shrinkage during the drying step allows to a catastrophic reduction (50%) of the foam porosity. To improve the foam stability we carried out a systematic study of the effect of gel foam aging on the drying process. Samples were aged in closed vessel at 25 C during different time period (from 6 to 240 h). The shrinkage and the mass loss during drying at 50 C were measured in situ, using a non-contact technique performed with a special apparatus. The results show that the total linear shrinkage decreases from 46% to 8% as the aging period increase from 6 to 240 h. This behavior is followed by a small change of total mass loss, from 42 to 54%. It indicates that by aging the structural stiffness of the foams increases due to secondary condensation reactions. Thus, by controlling the aging period, the porosity can be increased from 67 to 75% and the average size of mesopores of dried foams can be screened from 0.3 to 0.9 mum. Finally, these results demonstrate that the thermostimulated sol-gel transition provides a potential route to ceramic foams manufacture.
Resumo:
The aggregation, gelation, and aging of urea-cross-linked siloxane-poly(oxyethylene) nanohybrids [(U600)-n] containing two different amounts of europium triflate initially dissolved in an ethanol-water mixture were investigated by in situ small-angle X-ray scattering (SAXS). For both low (n = [O]/[Eu] = 80) and high (n = 25) europium contents, the SAXS intensity was attributed to the formation of siloxane clusters of about 8-11 Angstrom in size. Siloxane cluster formation and growth is a rapid process in hybrids with low Eu contents and slow in Eu-rich hybrids. An additional contribution to the scattering intensity at very low angles was attributed to the formation of a coarse structure level. At this secondary level, the structure can be described as a set of dense domains containing siloxane clusters embedded in a depleted matrix composed of unfolded polymer chains and solvent. By fitting a theoretical function for this model to the experimental SAXS curves, relevant structural parameters were determined as functions of time during the sol-gel transition and gel aging. For hybrids with low europium contents (n = 80), the size of the siloxane clusters remains essentially invariant, whereas the dense segregation domains progressively grow. In hybrids with high doping contents (n = 25), the preponderant structure variation during the first stages of the sol-gel transformation is the slow growth of siloxane clusters. For these hybrids, the segregation of siloxane clusters forming dense domains occurs only during advanced stages of the process.
Resumo:
The precipitation behaviour of a nickel free stainless steel containing 25% chromium, 17% manganese and 0.54% nitrogen, with duplex ferritic-austenitic microstructure, was studied using several complementary techniques of microstructural analysis after aging heat treatments between 600 and 1 000 degrees C for periods of lime between 15 and 6 000 min. During aging heat treatments, ferrite was decomposed into sigma phase and austenite by a eutectoid reaction, like in the Fe-Cr-Ni duplex stainless steel. Chromium nitride precipitation occurred in austenite, which had a high nitrogen supersaturation. Some peculiar aspects were observed in this austenite during its phase transformations. Chromium nitride precipitation occurred discontinuously in a lamellar morphology, such as pearlite in carbon steels. This kind of precipitation is not an ordinary observation in duplex stainless steels and the high levels of nitrogen in austenite can induce this type of precipitation, which has not been previously reported in duplex stainless steels. After chromium nitride precipitation in austenite, it was also observed sigma phase formation near the cells or colonies of discontinuously precipitated chromium nitride. Sigma phase formation was made possible by the depletion of nitrogen in those regions. Time-temperature-transformation (precipitation) diagrams were determined.
Resumo:
New silica-polypropyleneglycol ormosils (organically modified silicates) with covalent bends between the organic (polymer) and inorganic (silica) phases have been prepared by the sol-gel process. Their structural evolution during sol formation, sol-gel transition, gel aging and drying has been studied in situ by small-angle X-ray scattering (SAXS). The experimental SAXS curves corresponding to sols and gels exhibit features expected from fractal objects. Clusters of size around 55 Angstrom with an initial fractal dimension D = 2.4 are formed in the sol. They are constituted of small primary silica particles chemically crosslinked at the end of the polymer chains. A strong liquid-like spatial correlation between the silica particles develops during drying due to the shrinkage of the polymeric network induced by water and ethanol evaporation. The continuous increase in SAXS intensity during drying, while the interparticle distance remains constant, is a consequence of the progressive growth of the dry fraction of the total volume. After drying, the gel structure consists of a rather compact arrangement of silica particles embedded in the polypropyleneglycol matrix.
Resumo:
Objectives. This study evaluated the effect of two different surface conditioning methods on the repair bond strength of a bis-GMA-adduct/bis-EMA/TEGDMA based resin composite after three aging conditions.Methods. Thirty-six composite resin blocks (Esthet X, Dentsply) were prepared (5 mm x 6 mm x 6 mm) and randomly assigned into three groups for aging process: (a) immersion in citric acid (pH 3.0 at 37 degrees C, 1 week) (CA); (b) boiling in water for 8h (BW) and (c) thermocycling (x5000, 5-55 degrees C, dwell time: 30s) (TC). After aging, the blocks were assigned to one of the following surface conditioning methods: (1) silica coating (30 mu m SiOx) (CoJet, 3M ESPE) + silane (ESPE-Sil) (CJ), (2) phosphoric acid + adhesive resin (Single Bond, 3M ESPE) (PA). Resin composite (Esthet.X (R)) was bonded to the conditioned substrates incrementally and light polymerized. The experimental groups formed were as follows: Gr1:CA + PA; Gr2:CA + CJ Gr3:BW + PA; Gr4: BW + CJ; Gr5:TC + PA; Gr6: TC + CJ. The specimens were sectioned in two axes (x and y) with a diamond disc under coolant irrigation in order to obtain non-trimmed bar specimens (sticks, 10 mm x 1 mm x 1 mm) with 1 mm(2) of bonding area. The microtensile test was accomplished in a universal testing machine (crosshead speed: 0.5 mm min(-1)).Results. The means and standard deviations of bond strength (MPa +/- S.D.) per group were as follows: Gr1: 25.5 +/- 10.3; Gr2: 46.3 +/- 10.1; Gr3: 21.7 +/- 7.1; Gr4: 52.3 +/- 15.1; GrS: 16.1 +/- 5.1; Gr6, 49.6 +/- 13.5. The silica coated groups showed significantly higher mean bond values after all three aging conditions (p < 0.0001) (two-way ANOVA and Tukey tests, alpha = 0.05). The interaction effect revealed significant influence of TC aging on both silica coated and acid etched groups compared to the other aging methods (p < 0.032). Citric acid was the least aggressive aging medium.Significance. Chairside silica coating and silanization provided higher resin-resin bond strength values compared to acid etching with phosphoric acid followed by adhesive resin applications. Thermocycling the composite substrates resulted in the lowest repair bond strength compared to citric acid challenge or boiling in water. (C) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
During the period from October/92 to September/94 experiments were carried out at the Seed Laboratory, FCAV/UNESP, Jaboticabal, SP, Brazil, using soybean seeds of different genotypes in order to evaluate the effect of genotype on the electrical conductivity (bulk conductivity) of soaked seeds. Seed moisture content (105+/-3 degrees C, 24 h), standard germination (four 50-seed samples, paper towel, 30 degrees C), and vigor-accelerated aging (42 degrees C, 48 h) were first determined. Undamaged soybean seeds were soaked in deionized water (four 50-seed samples, 75 ml, 25 degrees C, 24 h) and electrical conductivity (mu mhos.cm(-1).g(-1)) was measured. Significant differences in conductivity were observed among genotypes having the same pattern of germination and vigor. The results have showed that electrical conductivity can be significantly influenced by genotype.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)