925 resultados para Entrapped air


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Post-natal exposure to air pollution is associated with diminished lung growth during school age. The current authors aimed to determine whether pre-natal exposure to air pollution is associated with lung function changes in the newborn. In a prospective birth cohort of 241 healthy term-born neonates, tidal breathing, lung volume, ventilation inhomogeneity and exhaled nitric oxide (eNO) were measured during unsedated sleep at age 5 weeks. Maternal exposure to particles with a 50% cut-off aerodynamic diameter of 10 microm (PM(10)), nitrogen dioxide (NO(2)) and ozone (O(3)), and distance to major roads were estimated during pregnancy. The association between these exposures and lung function was assessed using linear regression. Minute ventilation was higher in infants with higher pre-natal PM(10) exposure (24.9 mL x min(-1) per microg x m(-3) PM(10)). The eNO was increased in infants with higher pre-natal NO(2) exposure (0.98 ppb per microg x m(-3) NO(2)). Post-natal exposure to air pollution did not modify these findings. No association was found for pre-natal exposure to O(3) and lung function parameters. The present results suggest that pre-natal exposure to air pollution might be associated with higher respiratory need and airway inflammation in newborns. Such alterations during early lung development may be important regarding long-term respiratory morbidity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of NOx within the snowpack at Summit, Greenland were carried out from June 2008 to July 2010, using a novel system to sample firn air with minimal disruption of the snowpack. These long-term measurements were motivated by the need of improving the representation of air-snow interactions in global models. Results indicated that the NOx budget within the snowpack was on the order of 550 pptv as maximum, and was constituted primarily for NO2. NOx production was observed within the first 50 cm of the snowpack during the sunlight season between February and August. Presence of NOx at larger depths was attributed to high speed wind and vertical transport processes. Production of NO correlated with the seasonal incoming radiation profile, while NO2 maximum was observed in April. These measurements constitute the larger data set of NOx within the firn and will improve the representation of processes driving snow photochemistry at Summit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to provide a procedure to include emissions to the atmosphere resulting from the combustion of diesel fuel during dredging operations into the decision-making process of dredging equipment selection. The proposed procedure is demonstrated for typical dredging methods and data from the Illinois Waterway as performed by the U.S. Army Corps of Engineers, Rock Island District. The equipment included in this study is a 16-inch cutterhead pipeline dredge and a mechanical bucket dredge used during the 2005 dredging season on the Illinois Waterway. Considerable effort has been put forth to identify and reduce environmental impacts from dredging operations. Though environmental impacts of dredging have been studied no efforts have been applied to the evaluation of air emissions from comparable types of dredging equipment, as in this study. By identifying the type of dredging equipment with the lowest air emissions, when cost, site conditions, and equipment availability are comparable, adverse environmental impacts can be minimized without compromising the dredging project. A total of 48 scenarios were developed by varying the dredged material quantity, transport distance, and production rates. This produced an “envelope” of results applicable to a broad range of site conditions. Total diesel fuel consumed was calculated using standard cost estimating practices as defined in the U.S. Army Corps of Engineers Construction Equipment Ownership and Operating Expense Schedule (USACE, 2005). The diesel fuel usage was estimated for all equipment used to mobilize and/or operate each dredging crew for every scenario. A Limited Life Cycle Assessment (LCA) was used to estimate the air emissions from two comparable dredging operations utilizing SimaPro LCA software. An Environmental Impact Single Score (EISS) was the SimaPro output selected for comparison with the cost per CY of dredging, potential production rates, and transport distances to identify possible decision points. The total dredging time was estimated for each dredging crew and scenario. An average hourly cost for both dredging crews was calculated based on Rock Island District 2005 dredging season records (Graham 2007/08). The results from this study confirm commonly used rules of thumb in the dredging industry by indicating that mechanical bucket dredges are better suited for long transport distances and have lower air emissions and cost per CY for smaller quantities of dredged material. In addition, the results show that a cutterhead pipeline dredge would be preferable for moderate and large volumes of dredged material when no additional booster pumps are required. Finally, the results indicate that production rates can be a significant factor when evaluating the air emissions from comparable dredging equipment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demands in production and associate costs at power generation through non renewable resources are increasing at an alarming rate. Solar energy is one of the renewable resource that has the potential to minimize this increase. Utilization of solar energy have been concentrated mainly on heating application. The use of solar energy in cooling systems in building would benefit greatly achieving the goal of non-renewable energy minimization. The approaches of solar energy heating system research done by initiation such as University of Wisconsin at Madison and building heat flow model research conducted by Oklahoma State University can be used to develop and optimize solar cooling building system. The research uses two approaches to develop a Graphical User Interface (GUI) software for an integrated solar absorption cooling building model, which is capable of simulating and optimizing the absorption cooling system using solar energy as the main energy source to drive the cycle. The software was then put through a number of litmus test to verify its integrity. The litmus test was conducted on various building cooling system data sets of similar applications around the world. The output obtained from the software developed were identical with established experimental results from the data sets used. Software developed by other research are catered for advanced users. The software developed by this research is not only reliable in its code integrity but also through its integrated approach which is catered for new entry users. Hence, this dissertation aims to correctly model a complete building with the absorption cooling system in appropriate climate as a cost effective alternative to conventional vapor compression system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas sensors have been used widely in different important area including industrial control, environmental monitoring, counter-terrorism and chemical production. Micro-fabrication offers a promising way to achieve sensitive and inexpensive gas sensors. Over the years, various MEMS gas sensors have been investigated and fabricated. One significant type of MEMS gas sensors is based on mass change detection and the integration with specific polymer. This dissertation aims to make contributions to the design and fabrication of MEMS resonant mass sensors with capacitance actuation and sensing that lead to improved sensitivity. To accomplish this goal, the research has several objectives: (1) Define an effective measure for evaluating the sensitivity of resonant mass devices; (2) Model the effects of air damping on microcantilevers and validate models using laser measurement system (3) Develop design guidelines for improving sensitivity in the presence of air damping; (4) Characterize the degree of uncertainty in performance arising from fabrication variation for one or more process sequences, and establish design guidelines for improved robustness. Work has been completed toward these objectives. An evaluation measure has been developed and compared to an RMS based measure. Analytic models of air damping for parallel plate that include holes are compared with a COMSOL model. The models have been used to identify cantilever design parameters that maximize sensitivity. Additional designs have been modeled with COMSOL and the development of an analytical model for Fixed-free cantilever geometries with holes has been developed. Two process flows have been implemented and compared. A number of cantilever designs have been fabricated and the uncertainty in process has been investigated. Variability from processing have been evaluated and characterized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The South Florida Water Management District (SFWMD) manages and operates numerous water control structures that are subject to scour. In an effort to reduce scour downstream of these gated structures, laboratory experiments were performed to investigate the effect of active air-injection downstream of the terminal structure of a gated spillway on the depth of the scour hole. A literature review involving similar research revealed significant variables such as the ratio of headwater-to-tailwater depths, the diffuser angle, sediment uniformity, and the ratio of air-to-water volumetric discharge values. The experimental design was based on the analysis of several of these non-dimensional parameters. Bed scouring at stilling basins downstream of gated spillways has been identified as posing a serious risk to the spillway’s structural stability. Although this type of scour has been studied in the past, it continues to represent a real threat to water control structures and requires additional attention. A hydraulic scour channel comprised of a head tank, flow straightening section, gated spillway, stilling basin, scour section, sediment trap, and tail-tank was used to further this analysis. Experiments were performed in a laboratory channel consisting of a 1:30 scale model of the SFWMD S65E spillway structure. To ascertain the feasibility of air injection for scour reduction a proof-of-concept study was performed. Experiments were conducted without air entrainment and with high, medium, and low air entrainment rates for high and low headwater conditions. For the cases with no air entrainment it was found that there was excessive scour downstream of the structure due to a downward roller formed upon exiting the downstream sill of the stilling basin. When air was introduced vertically just downstream of, and at the same level as, the stilling basin sill, it was found that air entrainment does reduce scour depth by up to 58% depending on the air flow rate, but shifts the deepest scour location to the sides of the channel bed instead of the center. Various hydraulic flow conditions were tested without air injection to verify which scenario caused more scour. That scenario, uncontrolled free, in which water does not contact the gate and the water elevation in the stilling basin is lower than the spillway crest, would be used for the remainder of experiments testing air injection. Various air flow rates, diffuser elevations, air hole diameters, air hole spacings, diffuser angles and widths were tested in over 120 experiments. Optimal parameters include air injection at a rate that results in a water-to-air ratio of 0.28, air holes 1.016mm in diameter the entire width of the stilling basin, and a vertically orientated injection pattern. Detailed flow measurements were collected for one case using air injection and one without. An identical flow scenario was used for each experiment, namely that of a high flow rate and upstream headwater depth and a low tailwater depth. Equilibrium bed scour and velocity measurements were taken using an Acoustic Doppler Velocimeter at nearly 3000 points. Velocity data was used to construct a vector plot in order to identify which flow components contribute to the scour hole. Additionally, turbulence parameters were calculated in an effort to help understand why air-injection reduced bed scour. Turbulence intensities, normalized mean flow, normalized kinetic energy, and anisotropy of turbulence plots were constructed. A clear trend emerged that showed air-injection reduces turbulence near the bed and therefore reduces scour potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: We determined and compared urethral pressure measurements using air charged and microtip catheters in a prospective, single-blind, randomized trial. MATERIALS AND METHODS: A consecutive series of 64 women referred for urodynamic investigation underwent sequential urethral pressure measurements using an air charged and a microtip catheter in randomized order. Patients were blinded to the type and sequence of catheter used. Agreement between the 2 catheter systems was assessed using the Bland and Altman 95% limits of agreement method. RESULTS: Intraclass correlation coefficients of air charged and microtip catheters for maximum urethral closure pressure at rest were 0.97 and 0.93, and for functional profile length they were 0.9 and 0.78, respectively. Pearson's correlation coefficients and Lin's concordance coefficients of air charged and microtip catheters were r = 0.82 and rho = 0.79 for maximum urethral closure pressure at rest, and r = 0.73 and rho = 0.7 for functional profile length, respectively. When applying the Bland and Altman method, air charged catheters gave higher readings than microtip catheters for maximum urethral closure pressure at rest (mean difference 7.5 cm H(2)O) and functional profile length (mean difference 1.8 mm). There were wide 95% limits of agreement for differences in maximum urethral closure pressure at rest (-24.1 to 39 cm H(2)O) and functional profile length (-7.7 to 11.3 mm). CONCLUSIONS: For urethral pressure measurement the air charged catheter is at least as reliable as the microtip catheter and it generally gives higher readings. However, air charged and microtip catheters cannot be used interchangeably for clinical purposes because of insufficient agreement. Hence, clinicians should be aware that air charged and microtip catheters may yield completely different results, and these differences should be acknowledged during clinical decision making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation represents experimental and numerical investigations of combustion initiation trigged by electrical-discharge-induced plasma within lean and dilute methane air mixture. This research topic is of interest due to its potential to further promote the understanding and prediction of spark ignition quality in high efficiency gasoline engines, which operate with lean and dilute fuel-air mixture. It is specified in this dissertation that the plasma to flame transition is the key process during the spark ignition event, yet it is also the most complicated and least understood procedure. Therefore the investigation is focused on the overlapped periods when plasma and flame both exists in the system. Experimental study is divided into two parts. Experiments in Part I focuses on the flame kernel resulting from the electrical discharge. A number of external factors are found to affect the growth of the flame kernel, resulting in complex correlations between discharge and flame kernel. Heat loss from the flame kernel to code ambient is found to be a dominant factor that quenches the flame kernel. Another experimental focus is on the plasma channel. Electrical discharges into gases induce intense and highly transient plasma. Detailed observation of the size and contents of the discharge-induced plasma channel is performed. Given the complex correlation and the multi-discipline physical/chemical processes involved in the plasma-flame transition, the modeling principle is taken to reproduce detailed transitions numerically with minimum analytical assumptions. Detailed measurement obtained from experimental work facilitates the more accurate description of initial reaction conditions. The novel and unique spark source considering both energy and species deposition is defined in a justified manner, which is the key feature of this Ignition by Plasma (IBP) model. The results of numerical simulation are intuitive and the potential of numerical simulation to better resolve the complex spark ignition mechanism is presented. Meanwhile, imperfections of the IBP model and numerical simulation have been specified and will address future attentions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analyzing “nuggety” gold samples commonly produces erratic fire assay results, due to random inclusion or exclusion of coarse gold in analytical samples. Preconcentrating gold samples might allow the nuggets to be concentrated and fire assayed separately. In this investigation synthetic gold samples were made using similar density tungsten powder and silica, and were preconcentrated using two approaches: an air jig and an air classifier. Current analytical gold sampling method is time and labor intensive and our aim is to design a set-up for rapid testing. It was observed that the preliminary air classifier design showed more promise than the air jig in terms of control over mineral recovery and preconcentrating bulk ore sub-samples. Hence the air classifier was modified with the goal of producing 10-30 grams samples aiming to capture all of the high density metallic particles, tungsten in this case. Effects of air velocity and feed rate on the recovery of tungsten from synthetic tungsten-silica mixtures were studied. The air classifier achieved optimal high density metal recovery of 97.7% at an air velocity of 0.72 m/s and feed rate of 160 g/min. Effects of density on classification were investigated by using iron as the dense metal instead of tungsten and the recovery was seen to drop from 96.13% to 20.82%. Preliminary investigations suggest that preconcentration of gold samples is feasible using the laboratory designed air classifier.