965 resultados para Enthalpy calibration
Resumo:
We present a measurement of the top-quark width using $t\bar{t}$ events produced in $p\bar{p}$ collisions at Fermilab's Tevatron collider and collected by the CDF II detector. In the mode where the top quark decays to a $W$ boson and a bottom quark, we select events in which one $W$ decays leptonically and the other hadronically~(lepton + jets channel) . From a data sample corresponding to 4.3~fb$^{-1}$ of integrated luminosity, we identify 756 candidate events. The top-quark mass and the mass of $W$ boson that decays hadronically are reconstructed for each event and compared with templates of different top-quark widths~($\Gamma_t$) and deviations from nominal jet energy scale~($\Delta_{JES}$) to perform a simultaneous fit for both parameters, where $\Delta_{JES}$ is used for the {\it in situ} calibration of the jet energy scale. By applying a Feldman-Cousins approach, we establish an upper limit at 95$\%$ confidence level~(CL) of $\Gamma_t $
Resumo:
We report a measurement of the top quark mass, m_t, obtained from ppbar collisions at sqrt(s) = 1.96 TeV at the Fermilab Tevatron using the CDF II detector. We analyze a sample corresponding to an integrated luminosity of 1.9 fb^-1. We select events with an electron or muon, large missing transverse energy, and exactly four high-energy jets in the central region of the detector, at least one of which is tagged as coming from a b quark. We calculate a signal likelihood using a matrix element integration method, with effective propagators to take into account assumptions on event kinematics. Our event likelihood is a function of m_t and a parameter JES that determines /in situ/ the calibration of the jet energies. We use a neural network discriminant to distinguish signal from background events. We also apply a cut on the peak value of each event likelihood curve to reduce the contribution of background and badly reconstructed events. Using the 318 events that pass all selection criteria, we find m_t = 172.7 +/- 1.8 (stat. + JES) +/- 1.2 (syst.) GeV/c^2.
Resumo:
A careful comparison of the distribution in the (R, θ)-plane of all NH ... O hydrogen bonds with that for bonds between neutral NH and neutral C=O groups indicated that the latter has a larger mean R and a wider range of θ and that the distribution was also broader than for the average case. Therefore, the potential function developed earlier for an average NH ... O hydrogen bond was modified to suit the peptide case. A three-parameter expression of the form {Mathematical expression}, with △ = R - Rmin, was found to be satisfactory. By comparing the theoretically expected distribution in R and θ with observed data (although limited), the best values were found to be p1 = 25, p3 = - 2 and q1 = 1 × 10-3, with Rmin = 2·95 Å and Vmin = - 4·5 kcal/mole. The procedure for obtaining a smooth transition from Vhb to the non-bonded potential Vnb for large R and θ is described, along with a flow chart useful for programming the formulae. Calculated values of ΔH, the enthalpy of formation of the hydrogen bond, using this function are in reasonable agreement with observation. When the atoms involved in the hydrogen bond occur in a five-membered ring as in the sequence[Figure not available: see fulltext.] a different formula for the potential function is needed, which is of the form Vhb = Vmin +p1△2 +q1x2 where x = θ - 50° for θ ≥ 50°, with p1 = 15, q1 = 0·002, Rmin = 2· Å and Vmin = - 2·5 kcal/mole. © 1971 Indian Academy of Sciences.
Resumo:
An expression derived for the free energy of mixing of a divalent basic oxide (MO) with SiO2 based on a model of silicate structure, takes into account the distribution of O2- (from MO) into the silica network, the mixing of silicate ions with O2- and the enthalpy of mixing. The resulting expression is ΔGmix=RT{N11n (2N1-N)2/4N1(1-N)+N21n N 2-N/1-N}, where N={(β+N1)-√(β+N 1)2-8βN1N2}/2β β=characteristic constant for the system N1=mol fraction of silica N2=mol fraction of MO. For the proper choice of β, calculated values of the activity of MO for the system PbO-SiO2, MnO-SiO2, FeO-SiO2 and CaO-SiO2 are in good agreement with experiment. The model predicts that the activity of the basic oxide decreases with increase in temperature.
Resumo:
Volatile organic compounds (VOCs) are emitted into the atmosphere from natural and anthropogenic sources, vegetation being the dominant source on a global scale. Some of these reactive compounds are deemed major contributors or inhibitors to aerosol particle formation and growth, thus making VOC measurements essential for current climate change research. This thesis discusses ecosystem scale VOC fluxes measured above a boreal Scots pine dominated forest in southern Finland. The flux measurements were performed using the micrometeorological disjunct eddy covariance (DEC) method combined with proton transfer reaction mass spectrometry (PTR-MS), which is an online technique for measuring VOC concentrations. The measurement, calibration, and calculation procedures developed in this work proved to be well suited to long-term VOC concentration and flux measurements with PTR-MS. A new averaging approach based on running averaged covariance functions improved the determination of the lag time between wind and concentration measurements, which is a common challenge in DEC when measuring fluxes near the detection limit. The ecosystem scale emissions of methanol, acetaldehyde, and acetone were substantial. These three oxygenated VOCs made up about half of the total emissions, with the rest comprised of monoterpenes. Contrary to the traditional assumption that monoterpene emissions from Scots pine originate mainly as evaporation from specialized storage pools, the DEC measurements indicated a significant contribution from de novo biosynthesis to the ecosystem scale monoterpene emissions. This thesis offers practical guidelines for long-term DEC measurements with PTR-MS. In particular, the new averaging approach to the lag time determination seems useful in the automation of DEC flux calculations. Seasonal variation in the monoterpene biosynthesis and the detailed structure of a revised hybrid algorithm, describing both de novo and pool emissions, should be determined in further studies to improve biological realism in the modelling of monoterpene emissions from Scots pine forests. The increasing number of DEC measurements of oxygenated VOCs will probably enable better estimates of the role of these compounds in plant physiology and tropospheric chemistry. Keywords: disjunct eddy covariance, lag time determination, long-term flux measurements, proton transfer reaction mass spectrometry, Scots pine forests, volatile organic compounds
Resumo:
In this paper, the steady laminar viscous hypersonic flow of an electrically conducting fluid in the region of the stagnation point of an insulating blunt body in the presence of a radial magnetic field is studied by similarity solution approach, taking into account the variation of the product of density and viscosity across the boundary layer. The two coupled non-linear ordinary differential equations are solved simultaneously using Runge-Kutta-Gill method. It has been found that the effect of the variation of the product of density and viscosity on skin friction coefficient and Nusselt number is appreciable. The skin friction coefficient increases but Nusselt number decreases as the magnetic field or the total enthalpy at the wall increases
Resumo:
The low-temperature plastic flow of alpha-zirconium was studied by employing constantrate tensile tests and differential-stress creep experiments. The activation parameters, enthalpy and area, have been obtained as a function of stress for pure, as well as commercial zirconium. The activation area is independent of grain size and purity and falls to about 9b2 at high stresses. The deformation mechanism below about 700° K is found to be controlled by a single thermally activated process, and not a two-stage activation mechanism. Several dislocation mechanisms are examined and it is concluded that overcoming the Peierls energy humps by the formation of kink pairs in a length of dislocation is the rate-controlling mechanism. The total energy needed to nucleate a double kink is about 0.8 eV in pure zirconium and 1 eV in commercial zirconium
Resumo:
The standard molar Gibbs free energy of formation of Co2TiO4, CoTiO3,and CoTi2O5 as a function of temperature over an extended range (900 to 1675) K was measured using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte, with CoO as reference electrode and appropriate working electrodes. For the formation of the three compounds from their component oxides CoO with rock-salt and TiO2 with rutile structure, the Gibbs free energy changes are given by:Delta(f)G degrees((ox))(Co2TiO4) +/- 104/(J . mol(-1)) = -18865 - 4.108 (T/K)Delta(f)G degrees((ox))(CoTiO3) +/- 56/(J . mol(-1)) = -19627 + 2.542 (T/K) Delta(f)G degrees((ox))(CoTi2O5) +/- 52/(J . mol(-1)) = -6223 - 6.933 (T/K) Accurate values for enthalpy and entropy of formation were derived. The compounds Co2TiO4 with spinel structure and CoTi2O5 with pseudo-brookite structure were found to be entropy stabilized. The relatively high entropy of these compounds arises from the mixing of cations on specific crystallographic sites. The stoichiometry of CoTiO3 was confirmed by inert gas fusion analysis for oxygen. Because of partial oxidation of cobalt in air, the composition corresponding to the compound Co2TiO4 falls inside a two-phase field containing the spinet solid solution Co2TiO4-Co3O4 and CoTiO3. The spinel solid solution becomes progressively enriched in Co3O4 with decreasing temperature. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The activation area and activation enthalpy are determined as a function of stress and temperature for alpha titanium. The results indicated that plastic flow below about 700°K occurs by a single thermally activated mechanism. Activation area determined by differential-stress creep tests falls in the range 80−8b2 and does not systematically depend on the impurity content. The total activation enthalpy derived from the temperature and strain-rate dependence of flow stress is 1.15 eV. The experimental data support a lattice hardening mechanism as controlling the low-temperature deformation in alpha titanium.
Resumo:
Modeling and forecasting of implied volatility (IV) is important to both practitioners and academics, especially in trading, pricing, hedging, and risk management activities, all of which require an accurate volatility. However, it has become challenging since the 1987 stock market crash, as implied volatilities (IVs) recovered from stock index options present two patterns: volatility smirk(skew) and volatility term-structure, if the two are examined at the same time, presents a rich implied volatility surface (IVS). This implies that the assumptions behind the Black-Scholes (1973) model do not hold empirically, as asset prices are mostly influenced by many underlying risk factors. This thesis, consists of four essays, is modeling and forecasting implied volatility in the presence of options markets’ empirical regularities. The first essay is modeling the dynamics IVS, it extends the Dumas, Fleming and Whaley (DFW) (1998) framework; for instance, using moneyness in the implied forward price and OTM put-call options on the FTSE100 index, a nonlinear optimization is used to estimate different models and thereby produce rich, smooth IVSs. Here, the constant-volatility model fails to explain the variations in the rich IVS. Next, it is found that three factors can explain about 69-88% of the variance in the IVS. Of this, on average, 56% is explained by the level factor, 15% by the term-structure factor, and the additional 7% by the jump-fear factor. The second essay proposes a quantile regression model for modeling contemporaneous asymmetric return-volatility relationship, which is the generalization of Hibbert et al. (2008) model. The results show strong negative asymmetric return-volatility relationship at various quantiles of IV distributions, it is monotonically increasing when moving from the median quantile to the uppermost quantile (i.e., 95%); therefore, OLS underestimates this relationship at upper quantiles. Additionally, the asymmetric relationship is more pronounced with the smirk (skew) adjusted volatility index measure in comparison to the old volatility index measure. Nonetheless, the volatility indices are ranked in terms of asymmetric volatility as follows: VIX, VSTOXX, VDAX, and VXN. The third essay examines the information content of the new-VDAX volatility index to forecast daily Value-at-Risk (VaR) estimates and compares its VaR forecasts with the forecasts of the Filtered Historical Simulation and RiskMetrics. All daily VaR models are then backtested from 1992-2009 using unconditional, independence, conditional coverage, and quadratic-score tests. It is found that the VDAX subsumes almost all information required for the volatility of daily VaR forecasts for a portfolio of the DAX30 index; implied-VaR models outperform all other VaR models. The fourth essay models the risk factors driving the swaption IVs. It is found that three factors can explain 94-97% of the variation in each of the EUR, USD, and GBP swaption IVs. There are significant linkages across factors, and bi-directional causality is at work between the factors implied by EUR and USD swaption IVs. Furthermore, the factors implied by EUR and USD IVs respond to each others’ shocks; however, surprisingly, GBP does not affect them. Second, the string market model calibration results show it can efficiently reproduce (or forecast) the volatility surface for each of the swaptions markets.
Resumo:
A diffusion/replacement model for new consumer durables designed to be used as a long-term forecasting tool is developed. The model simulates new demand as well as replacement demand over time. The model is called DEMSIM and is built upon a counteractive adoption model specifying the basic forces affecting the adoption behaviour of individual consumers. These forces are the promoting forces and the resisting forces. The promoting forces are further divided into internal and external influences. These influences are operationalized within a multi-segmental diffusion model generating the adoption behaviour of the consumers in each segment as an expected value. This diffusion model is combined with a replacement model built upon the same segmental structure as the diffusion model. This model generates, in turn, the expected replacement behaviour in each segment. To be able to use DEMSIM as a forecasting tool in early stages of a diffusion process estimates of the model parameters are needed as soon as possible after product launch. However, traditional statistical techniques are not very helpful in estimating such parameters in early stages of a diffusion process. To enable early parameter calibration an optimization algorithm is developed by which the main parameters of the diffusion model can be estimated on the basis of very few sales observations. The optimization is carried out in iterative simulation runs. Empirical validations using the optimization algorithm reveal that the diffusion model performs well in early long-term sales forecasts, especially as it comes to the timing of future sales peaks.
Resumo:
The standard Gibbs energies of formation of RuO2 and OsO2 at high temperature have been determined with high precision, using a novel apparatus that incorporates a buffer electrode between the reference and working electrodes, The buffer electrode absorbs the electrochemical flux of oxygen through the solid electrolyte from the electrode with higher oxygen chemical potential to the electrode with lower oxygen potential, The buffer electrode prevents polarization of the measuring electrode and ensures accurate data, The standard Gibbs energies of formation (Delta(f)G degrees) of RuO2, in the temperature range of 900-1500 K, and OsO2, in the range of 900-1200 K, can be represented by the equations Delta(f)G degrees(RuO2)(J/mol) = -324 720 + 354.21T - 23.490T In T Delta(f)G degrees(OsO2)(J/mol) = -304 740 + 318.80T - 18.444T In T where the temperature T is given in Kelvin and the deviation of the measurement is +/- 80 J/mol, The high-temperature heat ;capacities of RuO2 and OsO2 are measured using differential scanning calorimetry. The information for both the low- and high-temperature heat rapacity of RuO2 is coupled with the Delta(f)G degrees data obtained in this study to evaluate the standard enthalpy of formation of RuO2 at 298.15 K (Delta(f)H degrees(298.15K)). The low-temperature heat capacity of OsO2 has not been measured: therefore, the standard enthalpy and entropy of formation of OsO2 at 298.15 K (Delta(f)H degrees(298.15K) and S degrees(298.15K), respectively) are derived simultaneously through an optimization procedure from the high-temperature heat capacity and the Gibbs energy of formation. Both Delta fH degrees(298.15K) and S degrees(298.15K) are treated as variables in the optimization routine, For RuO2, the standard enthalpy of formation at 298.15 K is Delta fH degrees(298.15K) (RuO2) -313.52 +/- 0.08 kJ/mol, and that for OsO2 is Delta(f)H degrees(298.15K) (OSO2) = -295.96 +/- 0.08 kJ/mol. The standard entropy of OsO2 at 298.15 K that has been obtained from the optimization is given as S degrees(298.15K) (OsO2) = 49.8 +/- 0.2 J (mol K)(-1).
Resumo:
The phase equilibrium studies of organic system, involving resorcinol (R) and p-dimethylaminobenzaldehyde (DMAB), reveal the formation of a 1:1 molecular complex with two eutectics. The heat of mixing, entropy of fusion, roughness parameter, interfacial energy, and the excess thermodynamic functions were calculated based on enthalpy of fusion data determined via differential scanning calorimetric (DSC) method. X-ray powder diffraction studies confirm that the eutectics are not simple mechanical mixture of the components under investigation. The spectroscopic investigations (IR and NMR) suggest the occurrence of hydrogen bonding between the components forming the molecular complex. The dielectric measurements, carried out on hot-pressed addition compound (molecular complex), show higher dielectric constant at 320 K than that of individual components. The microstructural investigations of eutectic and addition compound indicate dendritic and faceted morphological features. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The associated model for binary systems has been modified to include volume effects and excess entropy arising from preferential interactions between the associate and the free atoms or between the free atoms. Equations for thermodynamic mixing functions have been derived. An optimization procedure using a modified conjugate gradient method has been used to evaluate the enthalpy and entropy interaction energies, the free energy of dissociation of the complex, its temperature dependance and the size of the associate. An expression for the concentration—concentration structure factor [Scc (0)] has been deduced from the modified associated solution model. The analysis has been applied to the thermodynamic mixing functions of liquid Ga-Te alloys at 1120 K, believed to contain Ga2Te3 associates. It is observed that the modified associated solution model incorporating volume effects and terms for the temperature dependance of interaction energies, describes the thermodynamic properties of Ga-Te system satisfactorily.
Resumo:
It is currently believed that an unsubstituted axial hydroxyl at the specificity-determining C-4 locus of galactose is indispensable for recognition by galactose/N-acetylgalactosamine-specific lectins. Titration calorimetry demonstrates that 4-methoxygalactose retains binding allegiance to the Moraceae lectin jacalin and the Leguminosae lectin, winged bean (basic) agglutinin (WBA I). The binding reactions were driven by dominant favorable enthalpic contributions and exhibited significant enthalpy-entropy compensation. Proton NMR titration of C-methoxygalactose with jacalin and WBA I resulted in broadening of the sugar resonances without any change in chemical shift. The alpha-and beta-anomers of 4-methoxygalactose were found to be in slow exchange with free and lectin-bound states. Both the anomers experience magnetically equivalent environments at the respective binding sites. The binding constants derived from the dependence of NMR line widths on 4-methoxygalactose concentration agreed well with those obtained from titration calorimetry. The results unequivocally demonstrate that the loci corresponding to the axially oriented C-4 hydroxyl group of galactose within the primary binding site of these lectins exhibit plasticity. These analyses suggest, for the first time, the existence of C-H ... O-type hydrogen-bond(s) in protein-carbohydrate interactions in general and between the C-4 locus of galactose derivative and the lectins jacalin and WBA I in particular.