962 resultados para Energy of graphs
Resumo:
The paper studies the morphology and mechanical properties of immiscible binary blends of the nylon 1010 and HIPS through the radiation crosslinking method. In this blend, the HIPS particles were the dispersed phases in the nylon 1010 matrix. With increasing of dose, the elastic modulus increased, However, the tensile strength. elongation at bleak and the energy of fracture increased to a maximum at a dose of 0.34 MGy, then reduced with the increasing of dose. SEM photographs show that the hole sizes are not changed obviously at low dose and at high dose, remnants that cannot be dissolved in formic acid and THF can be observed in the holes and on the surface. TEM photographs showed that radiation destroys the rubber phases in the polymer blend. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel macrocyclic compound-water soluble functional calixresorcin[4]arenes-tetra para sulfo-phenylmethyl-calixresorcin[4]are was synthesized for the first time. The photophysical properties of terbium and europium ions encapsulated in the macrocyclic ligand were studied in detail. The triplet state energy of the calixresorcin[4]arene was determined to be 24400 cm(-1) by the low temperature phosphorescence spectrum and it was found that it can sensitize both terbium ion and europium ion. The possible energy transfer process between the functional calixresorcin[4]arene and the encapsulated Tb3+ and Eu3+ was discussed. The luminescence quantum efficiency of Tb3+- calixresorcin[4]arene was calculated.
Resumo:
According to the data obtained from Differential Scanning Calorimetry (DSC),the method of Jeziorny, BOPOXOBCKHH and a new approach proposed by our laboratry are applied to study the nonisothermal crystallization behavior of poly( 3-dodecylthiophene) (P3DDT) and poly(3-octadecylthiophene) (P3ODT),and Kissinger method is used to get the value of the crystallization activation energy. The effect of the different alkyl substitution on crystallization is also investigated. In comparison to the methods of Jeziorny and BOPOXOBCKHH in which it can be found that the deviation from the line occurs in the later stage of crystallization, the new approach appears applicable due to the better linear relation. The values of the crystallization activation energy of P3DDT and P3ODT are estimated as 184.78kJ/mol and 246.93kJ/mol, respectivley, which implies that it is easiser to crystallize P3DDT than P3ODT.
Resumo:
Physical aging of poly(aryl ether ether ketone ketone) (PEEKK) has been investigated. Heat flow responses were measured after annealing the amorphous samples obtained by quenching the melt into an ice-water bath close to, but below, the glass transition temperature. The extent of aging is related to the supercooling from the glass transition temperature and to the aging time. The activation energy of the aging process, which was estimated by a Williams-Watt expression, is similar in magnitude to that obtained for the cold crystallization for the aged samples. The quenched glass is a metastable glass. The conformation of molecular chains rearranges with physical aging which results in the formation of a denser packing in the amorphous phase. The dense amorphous phase may form an initial nucleus for crystallization. Isothermal cold crystallization of the aged samples was carried out. The Avrami equation was used to determine the kinetic parameters, and the Avrami constant n is about 2. An Arrhenius expression was used to evaluate the activation energy of relaxation upon physical aging and the activation energy of transportation upon isothermal crystallization. The activation energy of relaxation is similar in magnitude to that of crystallization for aged samples. Results obtained are interpreted as kinetic effects associated with the glass formation process.
Resumo:
Resonance electron capture mass spectrometry, in which an additional information coordinate, the energy of electron capture, is applied, has a high sensitivity and a high specificity. It is extensively used to study the structure elucidation, the mechanism of ion formation and the detection, identification and quantification of organic substances in mixture.
Resumo:
The crystallization behavior of poly (3-dodecylthiophene) (P3DDT) is studied bq differential scanning calorimetry (DSC) under different cooling rates. When the methods of Jeziorny., Ozawa and a new one proposed by our laboratory are applied to describe its nonisothermal crystallization behavior, the new one is confirmed to be the best and convenient. By determining kinetic parameters, the analysis of the nonisothermal crystallization behavior is performed. According to Kissinger method, the crystallization activation energy of P3DDT is also evaluated.
Resumo:
The valence change of samarium from trivalent to divalent in strontium hexaborate (SrB6O10) prepared in air is observed. The temperature dependence of the luminescence and vibronic transitions of Sm2+ are studied. The Sm2+ ions occupy three crystallographic sites. With increasing temperature, the D-5(0)-->F-7(0) transition line exhibits red shifts, and the half-width increases. At room temperature, due to the thermal population through the 4f(5)5d channel, the D-5(1)-->F-7(J) transitions are observed even though the vibrational energy is very close to the energy gap between the D-5(1) and D-5(0) levels in the host. A coupled phonon energy of about 108 cm(-1) is determined from the vibronic transitions of Sm2+ in the host.
Resumo:
The overall isothermal crystallization kinetics and melting behavior of poly(beta-hydroxybutyrate) (PHB)/poly(vinyl acetate) (PVAc) blends were studied by using differential scanning calorimetry(DSC). The Avrami analysis indicates that the addition of PVAc into PHB results in the decrease in the overall crystallization rate of the PHB phase, but does not affect PHB's nucleation mechanism and geometry of crystal growth. The activation energy of the overall process of crystallization increases with the increasing PVAc content in the blends. The phenomenon of multiple melting endotherms is observed, which is caused by melting and recrystallization during the DSC heating run. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The film by tetraphenylporphyrin((TPP)H-2) vapor deposition on iron was investigated by means of XPS, SEM and visible spectroscopy. N(1s) binding energy characteristic of(TPP)H-2 was gained directly from the deposited samples. N(1s) binding energy of the surface was greatly changed after the deposited sample was washed with solvent. It is indicated that the deposited film is composed of an outer-layer of physically adsorbed (TPP)H-2, and an inner-layer of chemically modified (TPP)H-2.
Resumo:
Physical aging of poly(aryl ether ether ketone ketone) (PEEKK) was investigated. Heat flow responses were measured after annealing the amorphous samples that were obtained by quenching the melt into an ice-water bath at just below the glass transition temperature. Isothermal cold crystallization of the aged samples was carried out. The Avrami equation was used to determine the kinetic parameters, and the Avrami constant it is about 2. An Arrhenius form was used to evaluate the relaxation activation energy of physical aging and the transport activation energy of isothermal crystallization. The activation energy of physical aging was similar in magnitude to that observed for the temperature dependence of crystallization under conditions of transportation control. Results obtained were interpreted as purely kinetic effects associated with the glass formation process. (C) 1998 John Wiley & Sons, Inc.
Resumo:
C-13 and H-1 relaxation times were measured as a function of temperature in two magnetic fields for dilute solutions of phenolphthalein poly(ether sulfone) (PES-C) in deuterated chloroform. The spin-lattice relaxation times were interpreted in terms of segmental motion characterized by the sharp cutoff model of Jones and Stockmayer (J. S. model). The phenyl group rotation is treated as a stochastic diffusion by the J. S. model. The restricted butterfly motion of the phenyl group attached to the cardo ring in PES-C is mentioned but is not discussed in detail in this work. Correlation times for the segmental motion are in the picosecond range which indicates the high flexibility of PES-C chains. The correlation time for the phenyl group internal rotation is similar to that of the segmental motion. The temperature dependence of these motions is weak. The apparent activation energy of the motions considered is less than 10 kJ/mol. The simulating results for PES are also reasonable considering the differences in structure compared with PES-C. The correlation times and the apparent activation energy obtained using the J. S. model for the main chain motion of PES-C are the same as those obtained using the damped orientational diffusion model and the conformational jump model.
Resumo:
The conformational transition of horse heart cytochrome c induced by bromopyrogal red (BPR) in very low concentration has been firstly investigated by dynamic spectroelectrochemical technique, both at the BPR adsorbed platinum gauze electrode and at a bare platinum gauze electrode in a solution containing BPR. The effect of BPR on the structure of cytochrome c was studied by UV-visible and Fourier transform IR spectroscopy. The unfolded cytochrome c behaves simply as an electron transfer protein with a formal potential of -142 mV vs. a normal hydrogen electrode. The difference between the formal potentials of the native and unfolded cytochrome c is coupled to a difference in conformational energy of the two states of about 40 kJ mol(-1), which agrees well with the result reported. The stability and slow refolding of the unfolded cytochrome c are discussed.
Resumo:
A comb-shaped polymer (BM350) with oligo-oxyethylene side chains of the type -O(CH2CH2O)(7)CH3 was prepared from methyl vinyl ether/maleic anhydride copolymer. Homogeneous amorphous polymer electrolyte complexes were made from the comb polymer and LICF(3)SO(3) by solvent casting from acetone, and their conductivities were measured as a function of temperature and salt concentration. Maximum conductivity close to 5.08 X 10(-5) Scm(-1) was obtained at room temperature and at a [Li]/[EO] ratio of about 0.12. The conductivity which displayed non-Arrhenius behaviour was analyzed using the Vogel-Tammann-Fulcher equation and interpreted on the basis of the configurational entropy model. The results of mid-IR showed that the coordination of Li+ to side chains made the C-O-C band become broader and shift slightly. X-ray photoelectron spectroscopy analysis indicated that the oxygen atoms in the two situations could coordinate to Li+ and this coordination resulted in the reduction of the electron orbit binding energy of F and S.
Resumo:
A study has been made of the crystallization behavior of polypropylene (PP) filled with rare earth oxides under isothermal conditions. These rare earth oxides include lanthanum oxide (La2O3), yttrium oxide (Y2O3), and a mixture of rare earth oxides containing 70% Y2O3 (Y2O3-0.70). A differential scanning calorimeter was used to monitor the energetics of the crystallization process from the melt. During isothermal crystallization, dependence of the relative degree of crystallinity on time was described by the Avrami equation. It has been shown that the addition of any of the three rare earth oxides causes a considerable increase in the overall crystallization rate of PP but does not influence the mechanism of nucleation and growth of the PP crystals. The analysis of kinetic data according to nucleation theories shows that the increase in crystallization rate of PP in the composites is due to the decrease in surface energy of the extremity surfaces. The relative contents of the beta-form in the composites are somewhat higher than that in the plain PP. However, the contents of the beta-form in the plain PP and the composites are all very low relative to those of the alpha-form and the influence of the formation of the beta-form on the crystallization kinetics can be neglected.
Resumo:
X-ray photoelectron spectra of some bioinorganic complexes of La, Pr, Nd, Sm, and Gd with N-acetylvaline have-been measured. The complex formation does not give any detectable influence on the binding energy of the N 1s peak in the amino group, but has some appreciable effect on the binding energy of the C 1s peak and the O 1s peak in the carboxyl and carbonyl group of the biological ligand. The spin-orbit splitting between the 3d5/2 and 3d3/2 core level of the rare earth ion in these bioinorganic complexes also becomes slightly larger than that of the free rare earth atom due to the effect of the crystal field from the biological ligands.