962 resultados para Endothelial Cytotoxicity
Resumo:
Tumor necrosis factor (TNF) is selectively cytotoxic to some types of tumor cells in vitro and exerts antitumor activity in vivo. Reactive oxygen intermediates (ROIs) have been implicated in the direct cytotoxic activity of TNF. By using confocal microscopy, flow cytometry, and the ROI-specific probe dihydrorhodamine 123, we directly demonstrate that intracellular ROIs are formed after TNF stimulation. These ROIs are observed exclusively under conditions where cells are sensitive to the cytotoxic activity of TNF, suggesting a direct link between both phenomena. ROI scavengers, such as butylated hydroxyanisole, effectively blocked the formation of free radicals and arrested the cytotoxic response, confirming that the observed ROIs are cytocidal. The mitochondrial glutathione system scavenges the major part of the produced ROIs, an activity that could be blocked by diethyl maleate; under these conditions, TNF-induced ROIs detectable by dihydrorhodamine 123 oxidation were 5- to 20-fold higher.
Resumo:
Molecular biomaterial engineering permits in vivo transplantation of cells and tissues, offering the promise of restoration of physiologic control rather than pharmacologic dosing with isolated compounds. We engrafted endothelial cells on Gelfoam biopolymeric matrices with retention of viability, normal growth kinetics, immunoreactivity, and biochemical activity. The production of heparan sulfate proteoglycan and inhibition of basic fibroblast growth factor binding and activity by engrafted cells were indistinguishable from endothelial cells grown in culture. Perivascular implantation of Gelfoam-endothelial cell scaffolds around balloon-denuded rat carotid arteries reduced intimal hyperplasia 88.1%, far better than the isolated administration of heparin, the most effective endothelial mimic compound. In concert with a reduction in intimal area, cell proliferation was reduced by > 90%. To our knowledge, there have been no previous reports of extravascular cell implants controlling vasculoproliferative disease. Tissue engineered cells offer the potential for potent methods of vascular growth regulation and insight into the complex autocrine-paracrine control mechanisms within the blood vessel wall.
Resumo:
To examine the role of complement components as regulators of the expression of endothelial adhesive molecules in response to immune complexes (ICs), we determined whether ICs stimulate both endothelial adhesiveness for leukocytes and expression of E-selectin and intercellular and vascular cell adhesion molecules 1 (ICAM-1 and VCAM-1). We found that ICs [bovine serum albumin (BSA)-anti-BSA] stimulated endothelial cell adhesiveness for added leukocytes in the presence of complement-sufficient normal human serum (NHS) but not in the presence of heat-inactivated serum (HIS) or in tissue culture medium alone. Depletion of complement component C3 or C8 from serum did not prevent enhanced endothelial adhesiveness stimulated by ICs. In contrast, depletion of complement component C1q markedly inhibited IC-stimulated endothelial adhesiveness for leukocytes. When the heat-labile complement component C1q was added to HIS, the capacity of ICs to stimulate endothelial adhesiveness for leukocytes was completely restored. Further evidence for the possible role of C1q in mediating the effect of ICs on endothelial cells was the discovery of the presence of the 100- to 126-kDa C1q-binding protein on the surface of endothelial cells (by cytofluorography) and of message for the 33-kDa C1q receptor in resting endothelial cells (by reverse transcription-PCR). Inhibition of protein synthesis by cycloheximide blocked endothelial adhesiveness for leukocytes stimulated by either interleukin 1 or ICs in the presence of NHS. After stimulation with ICs in the presence of NHS, endothelial cells expressed increased numbers of adhesion molecules (E-selectin, ICAM-1, and VCAM-1). Endothelial expression of adhesion molecules mediated, at least in part, endothelial adhesiveness for leukocytes, since leukocyte adhesion was blocked by monoclonal antibodies directed against E-selectin. These studies show that ICs stimulate endothelial cells to express adhesive proteins for leukocytes in the presence of a heat-labile serum factor. That factor appears to be C1q.
Resumo:
Triggering of the Fas/APO-1 cell-surface receptor induces apoptosis through an uncharacterized chain of events. Exposure of Fas-sensitive cells to an agonist monoclonal antibody induced cell death and a 200-300% elevation in endogenous levels of the sphingolipid ceramide, a proposed intracellular mediator of apoptosis. In contrast, similar treatment of Fas-resistant cells caused insignificant changes in ceramide levels. Because resistant cell lines expressed the Fas antigen, these results indicate that these cells have a defect in the proximal signaling events leading to ceramide generation. Exposure of the resistant cell lines to a synthetic analog of ceramide induced apoptosis, thus bypassing Fas resistance and indicating that the signaling pathways downstream of ceramide were intact. Furthermore, activation of protein kinase C with the diacylglycerol analog phorbol 12-myristate 13-acetate significantly reduced Fas-induced cytotoxicity, suggesting opposing roles for ceramide and protein kinase C in regulation of apoptosis. These results provide evidence for ceramide as a necessary and sufficient lipid mediator of Fas-mediated apoptosis and suggest this process may be modulated via activation of additional signal-transduction pathways.
Resumo:
Vascular endothelial growth factor (VEGF) is a potent and specific endothelial mitogen that is able to induce angiogenesis in vivo [Leung, D. W., Cachianes, G., Kuang, W.-J., Goeddel, D. V. & Ferrara, N. (1989) Science 246 1306-1309]. To determine if VEGF also influences the behavior of primordial endothelial cells, we used an in vivo vascular assay based on the de novo formation of vessels. Japanese quail embryos injected with nanomolar quantities of the 165-residue form of VEGF at the onset of vasculogenesis exhibited profoundly altered vessel development. In fact, the overall patterning of the vascular network was abnormal in all VEGF-injected embryos. The malformations were attributable to two specific endothelial cell activities: (i) inappropriate neovascularization in normally avascular areas and (ii) the unregulated, excessive fusion of vessels. In the first instance, supernumerary vessels directly linked the inflow channel of the heart to the aortic outflow channel. The second aberrant activity led to the formation of vessels with abnormally large lumens. Ultimately, unregulated vessel fusion generated massive vascular sacs that obliterated the identity of individual vessels. These observations show that exogenous VEGF has an impact on the behavior of primordial endothelial cells engaged in vasculogenesis, and they strongly suggest that endogenous VEGF is important in vascular patterning and regulation of vessel size (lumen formation).
Resumo:
Platelet factor 4 (PF-4) is an archetype of the "chemokine" family of low molecular weight proteins that play an important role in injury responses and inflammation. From activated human leukocyte culture supernatants, we have isolated a form of PF-4 that acts as a potent inhibitor of endothelial cell proliferation. The PF-4 derivative is generated by peptide bond cleavage between Thr-16 and Ser-17, a site located downstream from the highly conserved and structurally important CXC motif. The unique cleavage leads to a loss of one of the structurally important large loops in the PF-4 molecule and generation of an N terminus with basic residues that have the potential to interact with the acidic extracellular domain of the G-protein-coupled chemokine receptor. The N-terminal processed PF-4 exhibited a 30- to 50-fold greater growth inhibitory activity on endothelial cells than PF-4. Since endothelial cell growth inhibition is the only known cellular activity of the cleaved PF-4, we have designated this chemokine endothelial cell growth inhibitor. The N-terminal processing of PF-4 may represent an important mechanism for modulating PF-4 activity on endothelial cells during tissue injury, inflammation, and neoplasia.
Resumo:
Treatment of cultured bovine brain microvascular endothelial cells (BMECs) with interleukin 1 beta (IL-1 beta), an inflammatory cytokine, was shown to induce the accumulation of sulfoglucuronosyl paragloboside (SGPG), a glycolipid bearing the HNK-1 epitope. This resulted in the attachment of a greater number of human lymphocytes to the treated than to the untreated BMEC monolayers. Attachment of human lymphocytes to the IL-1 beta-activated BMEC cells could be blocked either by incubation of the human lymphocytes with an anti-L-selectin antibody or by application of an anti-SGPG antibody to the BMECs. These results suggest that SGPG may act as an important ligand for L-selectin for the regulation of the attachment of activated lymphocytes and their subsequent invasion into the nervous system parenchyma in inflammatory disorders of the central and peripheral nervous systems.
Resumo:
Several polycations possessing substantial buffering capacity below physiological pH, such as lipopolyamines and polyamidoamine polymers, are efficient transfection agents per se--i.e., without the addition of cell targeting or membrane-disruption agents. This observation led us to test the cationic polymer polyethylenimine (PEI) for its gene-delivery potential. Indeed, every third atom of PEI is a protonable amino nitrogen atom, which makes the polymeric network an effective "proton sponge" at virtually any pH. Luciferase reporter gene transfer with this polycation into a variety of cell lines and primary cells gave results comparable to, or even better than, lipopolyamines. Cytotoxicity was low and seen only at concentrations well above those required for optimal transfection. Delivery of oligonucleotides into embryonic neurons was followed by using a fluorescent probe. Virtually all neurons showed nuclear labeling, with no toxic effects. The optimal PEI cation/anion balance for in vitro transfection is only slightly on the cationic side, which is advantageous for in vivo delivery. Indeed, intracerebral luciferase gene transfer into newborn mice gave results comparable (for a given amount of DNA) to the in vitro transfection of primary rat brain endothelial cells or chicken embryonic neurons. Together, these properties make PEI a promising vector for gene therapy and an outstanding core for the design of more sophisticated devices. Our hypothesis is that its efficiency relies on extensive lysosome buffering that protects DNA from nuclease degradation, and consequent lysosomal swelling and rupture that provide an escape mechanism for the PEI/DNA particles.
Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin.
Resumo:
P-selectin, found in storage granules of platelets and endothelial cells, can be rapidly expressed upon stimulation. Mice lacking this membrane receptor exhibit a severe impairment of leukocyte rolling. We observed that, in addition to leukocytes, platelets were rolling in mesenteric venules of wild-type mice. To investigate the role of P-selectin in this process, resting or activated platelets from wild-type or P-selectin-deficient mice were fluorescently labeled and transfused into recipients of either genotype. Platelet-endothelial interactions were monitored by intravital microscopy. We observed rolling of either wild-type or P-selectin-deficient resting platelets on wild-type endothelium. Endothelial stimulation with the calcium ionophore A23187 increased the number of platelets rolling 4-fold. Activated P-selectin-deficient platelets behaved similarly, whereas activated wild-type platelets bound to leukocytes and were seen rolling together. Platelets of either genotype, resting or activated, interacted minimally with mutant endothelium even after A23187 treatment. The velocity of platelet rolling was 6- to 9-fold greater than that of leukocytes. Our results demonstrate that (i) platelets roll on endothelium in vivo, (ii) this interaction requires endothelial but not platelet P-selectin, and (iii) platelet rolling appears to be independent of platelet activation, indicating constitutive expression of a P-selectin ligand(s) on platelets. We have therefore observed an interesting parallel between platelets and leukocytes in that both of these blood cell types roll on stimulated vessel wall and that this process is dependent on the expression of endothelial P-selectin.
Resumo:
Murine endothelial cells are readily transformed in a single step by the polyomavirus oncogene encoding middle-sized tumor antigen. These cells (bEND.3) form tumors (hemangiomas) in mice which are lethal in newborn animals. The bEND.3 cells rapidly proliferate in culture and express little or no thrombospondin 1 (TS1). To determine the role of TS1 in regulation of endothelial cell phenotype, we stably transfected bEND.3 cells with a human TS1 expression vector. The cells expressing human TS1 were readily identified by their altered morphology and exhibited a slower growth rate and lower saturation density than the parental bEND.3 cells. The TS1-expressing cells also formed aligned cords of cells instead of clumps or cysts in Matrigel. Moreover, while the bEND.3 cells formed large tumors in nude mice within 48 hr, the TS1-expressing cells failed to form tumors even after 1 month. The TS1-transfected cells expressed transforming growth factor beta mRNA and bioactivity at levels similar to those of the parental or vector-transfected bEND.3 cells, indicating that the effects of TS1 expression are not due to the activation of transforming growth factor beta by TS1. TS1 expression resulted in a > 100-fold decrease in net fibrinolytic (urokinase-type plasminogen activator, uPA) activity due to more plasminogen-activator inhibitor 1 and less uPA secretion. TS1 thus appears to be an important regulator of endothelial cell phenotype required for maintaining the quiescent, differentiated state.
Resumo:
Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an approximately 3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with > 85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.
Resumo:
Levels and subcellular distribution of connexin 43 (Cx43), a gap junction protein, were studied in hamster leukocytes before and after activation with endotoxin (lipopolysaccharide, LPS) both in vitro and in vivo. Untreated leukocytes did not express Cx43. However, Cx43 was clearly detectable by indirect immunofluorescence in cells treated in vitro with LPS (1 micrograms/ml, 3 hr). Cx43 was also detected in leukocytes obtained from the peritoneal cavity 5-7 days after LPS-induced inflammation. In some leukocytes that formed clusters Cx43 immunoreactivity was present at appositional membranes, suggesting formation of homotypic gap junctions. In cell homogenates of activated peritoneal macrophages, Cx43, detected by Western blot analysis, was mostly unphosphorylated. A second in vivo inflammatory condition studied was that induced by ischemia-reperfusion of the hamster cheek pouch. In this system, leukocytes that adhered to venular endothelial cells after 1 hr of ischemia, followed by 1 hr of reperfusion, expressed Cx43. Electron microscope observations revealed small close appositions, putative gap junctions, at leukocyte-endothelial cell and leukocyte-leukocyte contacts. These results indicate that the expression of Cx43 can be induced in leukocytes during an inflammatory response which might allow for heterotypic or homotypic intercellular gap junctional communication. Gap junctions may play a role in leukocyte extravasation.
Resumo:
Construction of a bispecific single-chain antibody derivative is described that consists of two different single-chain Fv fragments joined through a Gly-Ser linker. One specificity of the two Fv fragments is directed against the CD3 antigen of human T cells and the other is directed against the epithelial 17-1A antigen; the latter had been found in a clinical trial to be a suitable target for antibody therapy of minimal residual colorectal cancer. The construct could be expressed in CHO cells as a fully functional protein, while its periplasmic expression in Escherichia coli resulted in a nonfunctional protein only. The antigen-binding properties of the bispecific single-chain antibody are indistinguishable from those of the corresponding univalent single-chain Fv fragments. By redirecting human peripheral T lymphocytes against 17-1A-positive tumor cells, the bispecific antibody proved to be highly cytotoxic at nanomolar concentrations as demonstrated by 51Cr release assay on various cell lines. The described bispecific construct has a molecular mass of 60 kDa and can be easily purified by its C-terminal histidine tail on a Ni-NTA chromatography column. As bispecific antibodies have already been shown to be effective in vivo in experimental tumor systems as well as in phase-one clinical trials, the small CD3/17-1A-bispecific antibody may be more efficacious than intact antibodies against minimal residual cancer cells.
Resumo:
Vesicles containing endothelin 1 (ET-1) were isolated from bovine aortic endothelial cells (BAECs) by fractionation of homogenates on sucrose density gradients by ultracentrifugation. The vesicles were localized at the 1.0/1.2 M sucrose interface using a specific anti-ET-1-(16-21) RIA. Identification of ET-1 and big ET-1 in this fraction was confirmed by HPLC analysis combined with RIA. Morphological examination of the ET-1-enriched fraction by electron microscopy identified clusters of vesicles approximately 100 nm in diameter. Immunostaining of ultrathin cryosections prepared from the vesicle fraction for ET-1 or big ET-1 showed clusters of 15-nm gold particles attached to or within vesicles. Immunofluorescence staining of whole BAECs using a specific ET-1-(16-21) IgG purified by affinity chromatography revealed punctate granulation of the cell cytoplasm viewed under light microscopy. This distinct pattern of staining was shown by confocal light microscopy to be intracellular. Immunofluorescence staining of whole cells with a polyclonal antiserum for big ET-1-(22-39) showed a defined perinuclear localization of precursor molecule. Hence, several different approaches have demonstrated that ET-1 and big ET-1 are localized within intracellular vesicles in BAECs, suggesting that these subcellular compartments are an important site for processing of big ET-1 by endothelin-converting enzyme.
Resumo:
A number of factors both stimulating and inhibiting angiogenesis have been described. In the current work, we demonstrate that the angiogenic factor vascular endothelial growth factor (VEGF) activates mitogen-activated protein kinase (MAPK) as has been previously shown for basic fibroblast growth factor. The antiagiogenic factor 16-kDa N-terminal fragment of human prolactin inhibits activation of MAPK distal to autophosphorylation of the putative VEGF receptor, Flk-1, and phospholipase C-gamma. These data show that activation and inhibition of MAPK may play a central role in the control of angiogenesis.