921 resultados para Elementi Finiti FEM Acciaio Parametrico Capannoni Matlab Ottimizzazione Verifica Mesh
Resumo:
A Simulink Matlab control system of a heavy vehicle suspension has been developed. The aim of the exercise presented in this paper was to develop a Simulink Matlab control system of a heavy vehicle suspension. The objective facilitated by this outcome was the use of a working model of a heavy vehicle (HV) suspension that could be used for future research. A working computer model is easier and cheaper to re-configure than a HV axle group installed on a truck; it presents less risk should something go wrong and allows more scope for variation and sensitivity analysis before embarking on further "real-world" testing. Empirical data recorded as the input and output signals of a heavy vehicle (HV) suspension were used to develop the parameters for computer simulation of a linear time invariant system described by a second-order differential equation of the form: (i.e. a "2nd-order" system). Using the empirical data as an input to the computer model allowed validation of its output compared with the empirical data. The errors ranged from less than 1% to approximately 3% for any parameter, when comparing like-for-like inputs and outputs. The model is presented along with the results of the validation. This model will be used in future research in the QUT/Main Roads project Heavy vehicle suspensions – testing and analysis, particularly so for a theoretical model of a multi-axle HV suspension with varying values of dynamic load sharing. Allowance will need to be made for the errors noted when using the computer models in this future work.
Resumo:
The new configuration proposed in this paper for Marx Generator (MG) aims to generate high voltage for pulsed power applications through reduced number of semiconductor components with a more efficient load supplying process. The main idea is to charge two groups of capacitors in parallel through an inductor and take advantage of resonant phenomenon in charging each capacitor up to a double input voltage level. In each resonant half a cycle, one of those capacitor groups are charged, and eventually the charged capacitors will be connected in series and the summation of the capacitor voltages can be appeared at the output of the topology. This topology can be considered as a modified Marx generator which works based on the resonant concept. Simulated models of this converter have been investigated in Matlab/SIMULINK platform and a prototype set up has been implemented in laboratory. The acquired results of either fully satisfy the anticipations in proper operation of the converter.
Resumo:
The new configuration proposed in this paper for Marx Generator (MG.) aims to generate high voltage for pulsed power applications through reduced number of semiconductor components with a more efficient load supplying process. The main idea is to charge two groups of capacitors in parallel through an inductor and take the advantage of resonant phenomenon in charging each capacitor up to a double input voltage level. In each resonant half a cycle, one of those capacitor groups are charged, and eventually the charged capacitors will be connected in series and the summation of the capacitor voltages can be appeared at the output of the topology. This topology can be considered as a modified Marx generator which works based on the resonant concept. Simulated models of this converter have been investigated in Matlab/SIMULINK platform and the acquired results fully satisfy the anticipations in proper operation of the converter.
Resumo:
Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.
Resumo:
Multilevel converters are used in high power and high voltage applications due to their attractive benefits in generating high quality output voltage. Increasing the number of voltage levels can lead to a reduction in lower order harmonics. Various modulation and control techniques are introduced for multilevel converters like Space Vector Modulation (SVM), Sinusoidal Pulse Width Modulation (SPWM) and Harmonic Elimination (HE) methods. Multilevel converters may have a DC link with equal or unequal DC voltages. In this paper a new modulation technique based on harmonic elimination method is proposed for those multilevel converters that have unequal DC link voltages. This new technique has better effect on output voltage quality and less Total Harmonic Distortion (THD) than other modulation techniques. In order to verify the proposed modulation technique, MATLAB simulations are carried out for a single-phase diode-clamped inverter.
Resumo:
Asset health inspections can produce two types of indicators: (1) direct indicators (e.g. the thickness of a brake pad, and the crack depth on a gear) which directly relate to a failure mechanism; and (2) indirect indicators (e.g. the indicators extracted from vibration signals and oil analysis data) which can only partially reveal a failure mechanism. While direct indicators enable more precise references to asset health condition, they are often more difficult to obtain than indirect indicators. The state space model provides an efficient approach to estimating direct indicators by using indirect indicators. However, existing state space models to estimate direct indicators largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires fixed inspection intervals. The discrete state assumption entails discretising continuous degradation indicators, which often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This paper proposes a state space model without these assumptions. Monte Carlo-based algorithms are developed to estimate the model parameters and the remaining useful life. These algorithms are evaluated for performance using numerical simulations through MATLAB. The result shows that both the parameters and the remaining useful life are estimated accurately. Finally, the new state space model is used to process vibration and crack depth data from an accelerated test of a gearbox. During this application, the new state space model shows a better fitness result than the state space model with linear and Gaussian assumption.