1000 resultados para Element contamination
Resumo:
The C-element logic gate is a key component for constructing asynchronous control in silicon integrated circuits. The purpose of this reported work is to introduce a new speed-independent C-element design, which is synthesised by the asynchronous Petrify design tool to ensure it is composed of sequential digital latches rather than complex gates. The benefits are that it guarantees correct speed-independent operation, together with easy integration in modern design flows and processes. It is compared to an equivalent speed-independent complex gate C-element design generated by Petrify in a 130 nm semiconductor process.
Resumo:
Subsistence farming communities with low socio-economic status reliant on a mono cereal maize diet are exposed to fumonisin levels that exceed the provisional maximum tolerable daily intake of 2 mu g kg(-1) body weight day(-1) recommended by the Joint FAO/WHO Expert Committee on Food Additives. In the rural Centane magisterial district, Eastern Cape Province, South Africa, it is customary during food preparation to sort visibly infected maize kernels from good maize kernels and to wash the good kernels prior to cooking. However, this customary practice seems not to sufficiently reduce the fumonisin levels. This is the first study to optimise the reduction of fumonisin mycotoxins in home-grown maize based on customary methods of a rural population, under laboratory-controlled conditions. Maize obtained from subsistence farmers was analysed for the major naturally occurring fumonisins (FB1, FB2 and FB3) by fluorescence HPLC. Large variations were observed in the unsorted and the experimental maize batches attributable to the non-homogeneous distribution of fumonisin contamination in maize kernels. Optimised hand-sorting of maize kernels by removing the visibly infected/damaged kernels (fumonisins, 53.7 +/- 15.0 mg kg(-1), 2.5% by weight) reduced the mean fumonisins from 2.32 +/- 1.16 mg kg(-1) to 0.68 +/- 0.42 mg kg(-1). Hand washing of the sorted good maize kernels for a period of 10 min at 25 degrees C resulted in optimal reduction with no additional improvement for wash periods up to 15 h. The laboratory optimised sorting reduced the fumonisins by 71 +/- 18% and an additional 13 +/- 12% with the 10 min wash. Based on these results and on local practices and practicalities the protocol that would be recommended to subsistence farmers consists of the removal of the infected/damaged kernels from the maize followed by a 10 min ambient temperature water wash. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Particulate systems are of interest in many disciplines. They are often investigated using the discrete element method because of its capability to investigate particulate systems at the individual particle scale. To model the interaction between two particles and between a particle and a boundary, conventional discrete element models use springs and dampers in both the normal and tangential directions. The significance of particle rotation has been highlighted in both numerical studies and physical experiments. Several researchers have attempted to incorporate a rotational torque to account for the rolling resistance or rolling friction by developing different models. This paper presents a review of the commonly used models for rolling resistance and proposes a more general model. These models are classified into four categories according to their key characteristics. The robustness of these models in reproducing rolling resistance effects arising from different physical situations was assessed by using several benchmarking test cases. The proposed model can be seen to be more general and suitable for modelling problems involving both dynamic and pseudo-static regimes. An example simulation of the formation of a 2D sandpile is also shown. For simplicity, all formulations and examples are presented in 2D form, though the general conclusions are also applicable to 3D systems.