925 resultados para Electric Car
Resumo:
Rising fuel prices and environmental concerns are threatening the stability of current electrical grid systems. These factors are pushing the automobile industry towards more effcient, hybrid vehicles. Current trends show petroleum is being edged out in favor of electricity as the main vehicular motive force. The proposed methods create an optimized charging control schedule for all participating Plug-in Hybrid Electric Vehicles in a distribution grid. The optimization will minimize daily operating costs, reduce system losses, and improve power quality. This requires participation from Vehicle-to-Grid capable vehicles, load forecasting, and Locational Marginal Pricing market predictions. Vehicles equipped with bidirectional chargers further improve the optimization results by lowering peak demand and improving power quality.
Resumo:
The development of embedded control systems for a Hybrid Electric Vehicle (HEV) is a challenging task due to the multidisciplinary nature of HEV powertrain and its complex structures. Hardware-In-the-Loop (HIL) simulation provides an open and convenient environment for the modeling, prototyping, testing and analyzing HEV control systems. This thesis focuses on the development of such a HIL system for the hybrid electric vehicle study. The hardware architecture of the HIL system, including dSPACE eDrive HIL simulator, MicroAutoBox II and MotoTron Engine Control Module (ECM), is introduced. Software used in the system includes dSPACE Real-Time Interface (RTI) blockset, Automotive Simulation Models (ASM), Matlab/Simulink/Stateflow, Real-time Workshop, ControlDesk Next Generation, ModelDesk and MotoHawk/MotoTune. A case study of the development of control systems for a single shaft parallel hybrid electric vehicle is presented to summarize the functionality of this HIL system.
Resumo:
This report presents the research results of battery modeling and control for hybrid electric vehicles (HEV). The simulation study is conducted using plug-and-play powertrain and vehicle development software, Autonomie. The base vehicle model used for testing the performance of battery model and battery control strategy is the Prius MY04, a power-split hybrid electric vehicle model in Autonomie. To evaluate the battery performance for HEV applications, the Prius MY04 model and its powertrain energy flow in various vehicle operating modes are analyzed. The power outputs of the major powertrain components under different driving cycles are discussed with a focus on battery performance. The simulation results show that the vehicle fuel economy calculated by the Autonomie Prius MY04 model does not match very well with the official data provided by the department of energy (DOE). It is also found that the original battery model does not consider the impact of environmental temperature on battery cell capacities. To improve battery model, this study includes battery current loss on coulomb coefficient and the impact of environmental temperature on battery cell capacity in the model. In addition, voltage losses on both double layer effect and diffusion effect are included in the new battery model. The simulation results with new battery model show the reduced fuel economy error to the DOE data comparing with the original Autonomie Prius MY04 model.
Resumo:
The separation of the valuable portion from the waste portion of an ore is an individual problem for every ore. However, the various methods for accomplishing this end, more or less classify themselves by the physical properties of the constituents of the ore. Most of the properties of minerals have been utilized in some way or other to affect the separation of the valuable from the invaluable parts. Practically nothing has been done so far with color and luster to attain this purpose. It is believed that the photo—electric cell could also be used in concentrating a certain class of ores which are not well suited to other methods.
Resumo:
This thesis will present strategies for the use of plug-in electric vehicles on smart and microgrids. MATLAB is used as the design tool for all models and simulations. First, a scenario will be explored using the dispatchable loads of electric vehicles to stabilize a microgrid with a high penetration of renewable power generation. Grid components for a microgrid with 50% photovoltaic solar production will be sized through an optimization routine to maintain storage system, load, and vehicle states over a 24-hour period. The findings of this portion are that the dispatchable loads can be used to guard against unpredictable losses in renewable generation output. Second, the use of distributed control strategies for the charging of electric vehicles utilizing an agent-based approach on a smart grid will be studied. The vehicles are regarded as additional loads to a primary forecasted load and use information transfer with the grid to make their charging decisions. Three lightweight control strategies and their effects on the power grid will be presented. The findings are that the charging behavior and peak loads on the grid can be reduced through the use of distributed control strategies.
Resumo:
In the field of copper metallurgy, the major changes effected in the original metallurgical scheme have been based largely upon the lowering in grade of copper ores, and the more particular demands of the fabricators of the metal. The former trend fostered the development of mineral beneficiation, which in turn caused the conversion from blast furnace to reverberatory furnace smelting.