930 resultados para Elastic rods and wires
Resumo:
We show that halo effects enhance fusion cross sections of weakly bound systems, comparing with the situation when there is no-halo. We introduce dimensionless fusion functions and energy variable quantity to investigate systematical trends in the fusion cross sections of weakly bound nuclei at near-barrier energies. We observe very clearly complete fusion suppression at energies above the barrier due to dynamic effects of the breakup on fusion. We explain this suppression in terms of the repulsive polarization potential produced by the breakup.
Resumo:
An experimental overview of reactions induced by the stable, but weakly-bound nuclei (6)Li, (7)Li and (9)Be, and by the exotic, halo nuclei (6)He, (8)B, (11)Be and (17)F On medium-mass targets, such as (58)Ni, (59)Co or (64)Zn, is presented. Existing data on elastic scattering, total reaction cross sections, fusion, breakup and transfer channels are discussed in the framework of a CDCC approach taking into account the breakup degree of freedom.
Resumo:
Using the Sao Paulo potential and the barrier penetration formalism we have calculated the astrophysical factor S(E) for 946 fusion reactions involving stable and neutron-rich isotopes of C, O, Ne, and Mg for center-of-mass energies E varying from 2 to approximate to 18-30 MeV (covering the range below and above the Coulomb barrier). We have parameterized the energy dependence, S(E), by an accurate universal 9-parameter analytic expression and present tables of fit parameters for all the reactions. We also discuss the reduced 3-parameter version of our fit which is highly accurate at energies below the Coulomb barrier, and outline the procedure for calculating the reaction rates. The results can be easily converted to thermonuclear or pycnonuclear reaction rates to simulate various nuclear burning phenomena, in particular, stellar burning at high temperatures and nucleosynthesis in high density environments. (C) 2010 Elsevier Inc. All rights reserved
Reaction mechanisms for weakly-bound, stable nuclei and unstable, halo nuclei on medium-mass targets
Resumo:
An experimental overview of reactions induced by the stable, but weakly-bound nuclei (6)Li, (7)Li and (9)Be, and by the exotic, halo nuclei (6)He, (8)B, (11)Be and (17)F on medium-mass targets, such as (58)Ni, (59)Co or (64)Zn, is presented. Existing data on elastic scattering, total reaction cross sections, fusion processes, breakup and transfer channels are discussed in the framework of a CDCC approach taking into account the breakup degree of freedom.
Resumo:
We use a new technique to investigate the systematic behavior of near barrier complete fusion, total fusion and total reaction cross sections of weakly bound systems. A dimensionless fusion excitation function is used as a benchmark to which renormalized fusion data are compared and dynamic breakup effects can be disentangled from static effects. The same reduction procedure is used to study the effect of the direct reaction mechanisms on the total reaction cross section.
Resumo:
Realistic coupled-channel calculation results for the (18)[O] + (58,60,64)Ni systems in the bombarding energy range 34.5 <= E(Lab) <= 6-5 MeV are presented. The overall agreement with existing experimental data is quite good. Our calculations predict an unexpected fusion suppression for above-barrier energies, with an important contribution of the two neutron ((18)O, (16)O) transfer channel couplings. The sub-barrier fusion enhancement and the above barrier suppression, predicted by the calculations, are consistent with the nuclear structure of the Ni region. Comparisons with recently reported similar effects in reactions induced by the (6)He projectile are discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work, angular distribution measurements for the elastic channel were performed for the (9)Be + (12)C reaction at the energies E(Lab) = 13.0, 14.5, 17.3, 19.0 and 21.0 MeV, near the Coulomb barrier. The data have been analyzed in the framework of the double folding Sao Paulo potential. The experimental elastic scattering angular distributions were well described by the optical potential at forward angles for all measured energies. However, for the three highest energies, an enhancement was observed for intermediate and backward angles. This can be explained by the elastic transfer mechanism. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The elastic channel of the (8)B + (58)Ni system has been measured at energies around the Coulomb barrier. An optical potential fi to the experimental angular distributions is obtained. The total reaction cross section consistent with the obtained potential is reported and possible deviations from normal behaviour are discussed.
Resumo:
This article describes a solid-state NMR (SSNMR) investigation of the influence of hydration and chemical cross-linking on the molecular dynamics of the constituents of the bovine pericardium (BP) tissues and its relation to the mechanical properties of the tissue. Samples of natural phenetylamine-diepoxide (DE)- and glutaraldehyde (GL)-fixed BP were investigated by (13)C cross-polarization SSNMR to probe the dynamics of the collagen, and the results were correlated to the mechanical properties of the tissues, probed by dynamical mechanical analysis. For samples of natural BP, the NMR results show that the higher the hydration level the more pronounced the molecular dynamics of the collagen backbone and sidechains, decreasing the tissue`s elastic modulus. In contrast, in DE- and GL-treated samples, the collagen molecules are more rigid, and the hydration seems to be less effective in increasing the collagen molecular dynamics and reducing the mechanical strength of the samples. This is mostly attributed to the presence of cross-links between the collagen plates, which renders the collagen mobility less dependent on the water absorption in chemically treated samples. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Polyanionic collagen obtained from bovine pericardial tissue submitted to alkaline hydrolysis is an acellular matrix with strong potential in tissue engineering. However, increasing the carboxyl content reduces fibril formation and thermal stability compared to the native tissues. In the present work, we propose a chemical protocol based on the association of alkaline hydrolysis with 1,4-dioxane treatment to either attenuate or revert the drastic structural modifications promoted by alkaline treatments. For the characterization of the polyanionic membranes treated with 1,4-dioxane, we found that (1) scanning electron microscopy (SEM) shows a stronger reorientation and aggregation of collagen microfibrils; (2) histological evaluation reveals recovering of the alignment of collagen fibers and reassociation with elastic fibers; (3) differential scanning calorimetry (DSC) shows an increase in thermal stability; and (4) in biocompatibility assays there is a normal attachment, morphology and proliferation associated with high survival of the mouse fibroblast cell line NIH3T3 in reconstituted membranes, which behave as native membranes. Our conclusions reinforce the ability of 1,4-dioxane to enhance the properties of negatively charged polyanionic collagen associated with its potential use as biomaterials for grafting, cationic drug- or cell-delivery systems and for the coating of cardiovascular devices.
Resumo:
We investigate magnetorheological fluids (MRFs) prepared with carbonyl iron powder and different types of hydrophobic and hydrophilic fumed silica. The rheological properties of the MRF suspensions were investigated with and without an applied magnetic field. The MRF samples prepared with hydrophobic silicas presented a more pronounced thixotropic effect and a higher recovery rate than those prepared with hydrophilic silicas. The application of a magnetic field to all the MRFs samples investigated leads to an increase in the viscosity and the thixotropic effect. MRF prepared with hydrophobic silicas presented smaller values of the viscosity than those prepared with hydrophilic silicas. At low applied magnetic fields, the type of the silica used to prepare the MRF leads to noticeable differences in the shear stress. However, these differences disappear at high magnetic fields. The results obtained showed that MRF samples prepared with the hydrophobic silica with the biggest particle diameter presented better characteristics for magnetorheological fluids, with higher values of yield stress, recovery rate, and elastic modulus. (C) 2009 The Society of Rheology. [DOI: 10.1122/1.3086870]
Resumo:
The surface of ramie cellulose whiskers has been chemically modified by grafting organic acid chlorides presenting different lengths of the aliphatic chain by an esterification reaction. The occurrence of the chemical modification was evaluated by FTIR and X-ray photoelectron spectroscopies, elemental analysis and contact angle measurements. The crystallinity of the particles was not altered by the chain grafting, but it was shown that covalently grafted chains were able to crystallize at the cellulose surface when using C18. Both unmodified and functionalized nanoparticles were extruded with low density polyethylene to prepare nanocomposite materials. The homogeneity of the ensuing nanocomposites was found to increase with the length of the grafted chains. The thermomechanical properties of processed nanocomposites were studied by differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA) and tensile tests. A significant improvement in terms of elongation at break was observed when sufficiently long chains were grafted on the surface of the nanoparticles. It was ascribed to improved dispersion of the nanoparticles within the LDPE matrix. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We have studied the universal conductance fluctuations (UCF) due to quantum interface in a two-dimensional electron gas (2DEG) grown on the substrates with pre-patterned, sub-micron wires. The dependence of UCF on the angle between the direction of the magnetic field and the substrate has been investigated. We found, that magnetoresistance traces for different angles are completely uncorrelated. A non-planar character of electron motion is responsible for these angular conductance fluctuations. We compared the experimental results with a simple geometrical model.
Resumo:
A 15-month-old DSH cat was presented with facial deformity secondary to multiple oral and maxillofacial fractures after being struck by an automobile. Multiple wires and dental acrylics were used for fracture repair.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)