991 resultados para Earth temperature.
Resumo:
To constrain the age of strike-slip shear, related granitic magmatism, and cooling along the Insubric line, 29 size fractions of monazite and xenotime were dated by the U-Pb method, and a series of 25 Rb-Sr and Ar-40/Ar-39 ages were measured on different size fractions of muscovite and biotite. The three pegmatitic intrusions analyzed truncate high-grade metamorphic mylonite gneisses of the Simplon shear zone, a major Alpine structure produced in association with dextral strike-slip movements along the southern edge of the European plate, after collision with its Adriatic indenter. Pegmatites and aplites were produced between 29 and 25 Ma in direct relation to right-lateral shear along the Insubric line, by melting of continental crust having Sr-87/Sr-86 between 0.7199 and 0.7244 at the time of melting. High-temperature dextral strike-slip shear was active at 29.2 +/- 0.2 (2 sigma) Ma, and it terminated before 26.4 +/- 0.1 Ma. During dike injection, temperatures in the country rocks of the Isorno-Orselina and Monte Rosa structural units did not exceed approximate to 500 degrees C, leading to fast initial cooling, followed by slower cooling to approximate to 350 degrees C within several million years. In one case, initial cooling to approximate to 500 degrees C was significantly delayed by about 4 m.y., with final cooling to approximate to 300 degrees C at 20-19 Ma in all units. For the period between 29 and 19 Ma, cooling of the three sample localities was non-uniform in space and time, with significant variations on the kilometre scale. These differences are most likely due to strongly varying heat flow, and/or heterogeneous distribution of unroofing rates within the continuously deforming Insubric line. If entirely ascribed to differences in unroofing, corresponding rates would vary between 0.5 and 2.5 mm/y, for a thermal gradient of 30 degrees/km.
Resumo:
Moissanite (natural SiC) has been recovered from podiform chromitites of several ophiolite complexes, including the Luobusa and Donqiao ophiolites in Tibet, the Semail ophiolite in Oman and the United Arab Emirates, and the Ray-Iz ophiolite of the Polar Urals, Russia. Taking these new occurrences with the numerous earlier reports of moissanite in diamondiferous kimberlites leads to the conclusion that natural SiC is a widespread mineral in the Earth's mantle, which implies at least locally extremely low redox conditions. The ophiolite moissanite grains are mostly fragments (20 to 150 mu m) with one or more crystal faces, but some euhedral hexagonal grains have also been recovered. Twinned crystals are common in chromitites from the Luobusa ophiolite. The moissanite is rarely colorless, more commonly light bluish-gray to blue or green. Many grains contain inclusions of native Si and Fe-Si alloys (FeSi(2), Fe(3)Si(7)). Secondary ion mass spectrometric (SIMS) analysis shows that the ophiolite-hosted moissanite has a distinctive (13)C-depleted isotopic composition (delta(13)C from -18 to -35 parts per thousand, n=36), much lighter than the main carbon reservoir in the upper mantle (delta(13)C near -5 parts per thousand). The compiled data from moissanite from kimberlites and other mantle settings share the characteristic of strongly (13)C-depleted isotopic composition. This suggests that moissanite originates from a separate carbon reservoir in the mantle or that its formation involved strong isotopic fractionation. The degree of fractionation needed to produce the observed moissanite compositions from the main C-reservoir would be unrealistically large at the high temperatures required for moissanite formation. Subduction of biogenic carbonaceous material could potentially satisfy both the unusual isotopic and redox constraints on moissanite formation, but this material would need to stay chemically isolated from the upper mantle until it reached the high-T stability field of moissanite. The origin of moissanite in the mantle is still unsolved, but all evidence from the upper mantle indicates that it cannot have formed there, barring special and local redox conditions. We suggest, alternatively, that moissanite may have formed in the lower mantle, where the existence of (13)C-depleted carbon is strongly supported by studies of extraterrestrial carbon (Mars, Moon, meteorites). (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
We find that even very low Ni doping levels of high-quality Bi2Sr2Ca1Cu2O8 single crystals strongly affect the transition temperature T(c). We also observed that T(c) is not related to the total Ni concentration, but only to that of Ni engaged in NiO-type bonds. By controlling the temperature during crystal growth, one can modify the relative weight of Ni in NiO-type bonds with respect to other configurations-and therefore T(c).
Resumo:
The northeastern portion of the Mont Blanc massif in western Switzerland is predominantly comprised of the granitic rocks of the Mont Blanc intrusive suit, and the Mont Blanc basement gneisses. Within these metamorphic rocks are a variety of sub-economic Fe skarns. The mineral assemblages and fluid inclusions from these rocks have been used to derive age, pressure, temperature and fluid composition constraints for two Variscan events. Metamorphic hornblendes within the assemblages from the basement amphibolites and iron sk:lms have been dated using Ar-40/Ar-39, and indicate that these metamorphic events have a minimum age of approximately 334 Ma. Garnet-hornblende-plagioclase thermobarometry and stable isotope data obtained from the basement amphibolites are consistent with metamorphic temperatures in the range 515 to 580 degrees C, and pressures ranging from 5 to 8 kbar. Garnet-hornblende-magnetite thermobarometry and fluid inclusion studies indicate that the iron skarns formed at slightly lower temperatures, ranging from 400 to 500 degrees C in the presence of saline fluids at formational pressures similar to those experienced by the basement amphibolites. Late Paleozoic minimum uplift rates and geothermal gradients calculated using these data and the presence of Ladinien ichnofossils are on the order of 0.32 mm/year and 20 degrees C/km respectively. These uplift rates and geothermal gradients differ from those obtained from the neighbouring Aiguilles Rouges massif and indicate that these two massifs experienced different metamorphic conditions during the Carboniferous and Permian periods. During the early to late Carboniferous period the relative depths of the two massifs were reversed with the Aiguilles Rouges being initially unroofed at a much greater rate than the Mont Blanc, but experiencing relatively slower uplift rates near the termination of the Variscan orogeny.
Resumo:
Selostus: Perunan ja perunahybridien jäätymisen ja fotoinhibition kestävyys
Resumo:
Objectives of this investigation were to measure the effects of moderate heat treatments (below the dehydroxylation temperature) on physical and chemical properties of a calcium-montmorillonite clay. Previous workers have noted the reduction in cation exchange capacity and swelling property after heating in the range 200 to 400°C, and have suggested several possible explanations, such as hysteresis effect, increased inter-layer attractions due to removal of inter-layer water, or changes in the disposition of inter-layer or layer surface ions. The liquid limits of Ca-montmorillonite were steadily decreased with increased temperature of treatment, levelling at about 450°C. The plastic limit decreased slightly up to 350°C, above which samples could no longer be rolled into threads. The gradual change is in contrast with sudden major changes noted for weight loss (maximum rates of change at l00°C and 500°C), glycol retention surface area (520°C), and d001 diffraction peak intensity (17.7 A spacing) and breadth after glycolation (530°C). Other properties showing more gradual reductions with heat treatment were amount of exchangeable calcium (without water soaking), cation exchange capacity by NH4AC method, and d001 intensity (21 A spacing) after storing at 100% r.h. one month and re-wetting with water. Previous water soaking allowed much greater release of fixed Ca++ up to 450°C. Similar results were obtained with cation exchange capacities when samples were treated with N CaCl2 solution. The 21.0 A peak intensity curve showed close similarity to the liquid limit and plastic index curves in the low temperature range, and an explanation is suggested.
Resumo:
Selostus: Kohotettujen CO‚́‚:n ja lämpötilan vaikutukset kevätvehnän fenologiseen kehitykseen ja sadontuottomahdollisuuksiin
Resumo:
This paper describes a low-cost microprocessed instrument for in situ evaluating soil temperature profile ranging from -20.0°C to 99.9°C, and recording soil temperature data at eight depths from 2 to 128 cm. Of great importance in agriculture, soil temperature affects plant growth directly, and nutrient uptake as well as indirectly in soil water and gas flow, soil structure and nutrient availability. The developed instrument has potential applications in the soil science, when temperature monitoring is required. Results show that the instrument with its individual sensors guarantees ±0.25°C accuracy and 0.1°C resolution, making possible localized management changes within decision support systems. The instrument, based on complementary metal oxide semiconductor devices as well as thermocouples, operates in either automatic or non-automatic mode.
Resumo:
Class A, B, and C concrete paving mixes were tested for compressive strength at 40°F and 73°F, both with and without fly ash substitution for 15% of the portland cement. Two Class C ashes and one Class F ash from Iowa approved sources were examined in each mix. The purpose of the study was to provide data on cool weather strength development of concrete paving mixes utilizing Iowa materials. In all cases except one, the fly ash concretes exhibited lower 7 and 28- day compressive strengths at 40°F than control mixes. The continuation of the October 15 cut-off date for the use of fly ash concrete is recommended.
Resumo:
The interrelation of curing time, curing temperature, strength, and reactions in lime-bentonite-water mixtures was examined. Samples were molded at constant density and moisture content and then cured for periods of from 1 to 56 days at constant temperatures that ranged from 5C to 60C. After the appropriate curing time the samples were tested for unconfined compressive strength. The broken samples were then analyzed by x-ray diffractometer and spectrophotometer to determine the identity of the reaction products present after each curing period. It was found that the strength gain of lime-clay mixtures cured at different temperatures is due to different phases of the complex reaction, lime & clay to CSH(gel) to CSH(II) to CSH(I) to tobermorite. The farther the reaction proceeds, the higher the strength. There was also evidence of lattice substitutions in the structure of the calcium silicate hydrates at curing temperatures of 50C and higher. No consistent relationship between time, temperature, strength, and the S/A ration of reaction products existed, but in order to achieve high strengths the apparent C/S ration had to be less than two. The curing temperature had an effect on the strength developed by a given amount of reacted silica in the cured lime-clay mixture, but at a given curing temperature the cured sample that had the largest amount of reacted silica gave the highest strength. Evidence was found to indicate that during the clay reaction some calcium is indeed adsorbed onto the clay structure rather than entering into a pozzolanic reaction. Finally, it was determined that it is possible to determine the amount of silica and alumina in lime-clay reaction products by spectrophotometric analysis with sufficient accuracy for comparison purposes. The spectrophotometric analysis techniques used during the investigation were simple and were not time consuming.
Resumo:
This research, initiated in October 1992, was located at the intersection of Blairs Ferry Road and Lindale Drive in the City of Marion. The wall is located on the southeast corner of the intersection. Reinforced retaining wall construction started with a five inch base of roadstone with one inch of sand for leveling purposes. One and one-half to two feet of one inch clean stone was placed behind the blocks. A four inch perforated plastic pipe was placed approximately nine inches from the bottom of the one inch clean stone. The Tenswal, tensar geogrid was placed at every third layer. Openings in the Tenswal are hooked over plastic dowels in the blocks. The tenswal reaches from the face of the wall back 5' to 8'. The cost for constructing this wall was $124,400. The wall has performed well for the past five years. The wall improves the aesthetics of a high traffic volume intersection of an urban area. Many positive comments have been received by the city regarding its appearance. The City of Marion has been pleased with the wall and has used this type of wall on subsequent projects.
Resumo:
Reinforced Earth is a French development that has been used in the United States for approximately ten years. Virbro-Replacement, more commonly referred to as stone columns, is an outgrowth of deep densification of cohesionless soils originally developed in Germany. Reinforced Earth has applicability when wall height is greater than about twelve feet and deep seated foundation failure is not a concern. Stone columns are applicable when soft, cohesive subsoil conditions are encountered and bearing capacity and shearing resistance must be increased. The conditions in Sioux City on Wesley Way can be summarized as: (1) restricted right of way, (2) fill height in excess of 25 feet creating unstable conditions, (3) adjacent structures that could not be removed. After analyzing alternatives, it was decided that Reinforced Earth walls constructed on top of stone columns were the most practical approach.