978 resultados para EXCHANGE MEMBRANE
Resumo:
Nylon membrane was modified by binding with polyhydroxyl-containing materials to increase its hydrophilicity and reduce its nonspecific interaction with proteins. The effect of binding hydrophilic materials on amount of ligand bound-Cibacron Blue F3GA (CBF) was investigated. Experimental data showed that the amount of CBF bound can be increased significantly after binding of hydrophilic materials.
Removal of endotoxin from human serum albumin solutions by hydrophobic and cationic charged membrane
Resumo:
A novel matrix of macropore cellulose membrane was prepared by chemical graft, and immobilized the cationic charged groups as affinity ligands. The prepared membrane Fan be used for the removal of endotoxin from human serum albumin (HSA) solutions. With a cartridge of 20 sheets affinity membrane of 47 mm diameter, the endotoxin level in HSA solution can be reduced ro 0.027 eu/mL. Recovery of HSA was over 95%.
Resumo:
A perovskite-type oxide of Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCFO) with mixed electronic and oxygen ionic conductivity at high temperatures was used as an oxygen-permeable membrane. A tubular membrane of BSCFO made by extrusion method has been used in the membrane reactor to exclusively transport oxygen for the partial oxidation of ethane (POE) to syngas with catalyst of LiLaNiO/gamma-Al2O3 at temperatures of 800-900 degreesC. After only 30 min POE reaction in the membrane reactor, the oxygen permeation flux reached at 8.2 ml cm(-2) min(-1). After that, the oxygen permeation flux increased slowly and it took 12 h to reach at 11.0 ml cm(-2) min(-1). SEM and EDS analysis showed that Sr and Ba segregations occurred on the used membrane surface exposed to air while Co slightly enriched on the membrane surface exposed to ethane. The oxygen permeation flux increased with increasing of concentration of C2H6, which was attributed to increasing of the driving force resulting from the more reducing conditions produced with an increase of concentration of C2H6 in the feed gas. The tubular membrane reactor was successfully operated for POE reaction at 875 degreesC for more than 100 h without failure, with ethane conversion of similar to 100%, CO selectivity of >91% and oxygen permeation fluxes of 10-11 ml cm(-2) min(-1). (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Separation of the acidic compounds in the ion-exchange capillary electrochromatograph (IE-CEC) with strong anion-exchange packing as the stationary phase was studied. It was observed that the electroosmotic flow (EOF) in strong anion-exchange CEC moderately changed with increase of the eluent ionic strength and decrease of the eluent pH, but the acetonitrile concentration in the eluent had almost no effect on the EOF. The EOF in Strong anion-exchange CEC with eluent of low pH value was much larger than that in RP-CEC with Spherisorb-ODS as the stationary phase. The retention of acidic compounds on the strong anion-exchange packing was relatively weak due to only partial ionization of them, and both chromatographic and electrophoretic processes contributed to separation. It was observed that the retention values of acidic compounds decreased with the increase of phosphate buffer and acetonitrile concentration in the eluent as well as the decrease of the applied voltage, and even the acidic compounds could elute before the void time. These factors also made an important contribution to the separation selectivity for tested acidic compounds, which could be separated rapidly with high column efficiency of more than 220 000 plates/m under the optimized separation conditions. (C) 2000 Elsevier Science BN. All rights reserved.
Resumo:
Separation of small peptides on ion-exchange capillary electrochromatography (IE-CEC) with strong cation-exchange packing (SCX) as stationary phase was investigated. It was observed that the number of theoretical plates for small peptides varied from 240 000 to 460 000/m, and the relative standard deviation for t(0) and the migration time of peptides were less than 0.57% and 0.27%, respectively for ten consecutive runs. Unusually high column efficiency has been explained by the capillary electrophoretic stacking and chromatofocusing phenomena during the injection and separation of positively charged peptides. The sample buffer concentration had a marked effect on the column efficiency and peak area of the retained peptides. The influences of the buffer concentration and pH value as well as the applied voltage on the separation were investigated. It has been shown that the electrostatic interaction between the positively charged peptides and the SCX stationary phase played a very important role in IE-CEC, which provided the different separation selectivity from those in the capillary electrophoresis and reversed-phase liquid chromatography. A fast separation of ten peptides in less than 3.5 min on IE-CEC by adoption of the highly applied voltage was demonstrated. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A novel mode of capillary electrochromatography (CEC), called dynamically modified strong cation-exchange CEC (DMSCX-CEC), is described in this paper. A column packed with a strong cation-exchange (SCX) packing material was dynamically modified with a long-chain quaternary ammonium salt, cetyltrimethylammonium bromide (CTAB), which was added to the mobile phase. CTAB ions were adsorbed onto the surface of the SCX packing material, and the resulting hydrophobic layer on this packing was used as the stationary phase. Using the dynamically modified SCX column, neutral solutes were separated with the CEC mode. The highest number of theoretical plates obtained was about 190 000/m, and the relative standard deviations (RSD's) for migration times and capacity factors of alkylbenzenes were less than 1.0% and 2.0% for five consecutive runs, respectively. The effects of CTAB and methanol concentrations and the pH value of the mobile phase on the electroosmotic flow and the separation mechanism were investigated. Excellent simultaneous separation of the basic and neutral solutes in DMSCX-CEC with a high-pH mobile phase was obtained, A mixture containing the acidic, basic, and neutral compounds was well separated in this mode with a low-pH mobile phase; however, peak tailing for basic compounds was observed in this mobile phase.
Resumo:
The original cellulose fibers and those treated by alkaline solution were both used to prepare the acrylic membranes. The two kinds of membranes were packed into the columns for high-performance immunoaffinity chromatography by the immobilization of protein A on them. It was observed that the alkaline treatment of the cellulose fiber decreased the pressure resistance of the membrane to the mobile phases and greatly increased the accessible volume to the proteins, but affected the adsorption capacity of human IgG on the protein A membrane columns less. There is little difference between those two kinds of membranes on the adsorption capacities of HIgG, which means that the alkaline treatment of the cellulose fiber only significantly changes the void volume inter-membrane, and the porosity and surface area of membrane less. Alkaline treatment of the cellulose fiber reduced the membrane-column efficiency significantly. Some typical examples for the immunoaffinity analysis of IgG from human and dog plasma on the protein A membrane columns are illustrated. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
CH4-CO2-O-2 reforming to syngas in a never Ba0.5Sr0.5Co0.8Fe0.2O3.delta oxygen-permeable membrane reactor using LiLaNiO/gamma-Al2O3 as catalyst was successfully reported. Excellent reaction performance was achieved with around 92% methane conversion efficiency, 95% CO2 conversion rate, and nearly 8.5mL/min.cm(2) oxygen permeation flux. In contrast to the oxygen permeation model with the presence of large concentration of CO2 (under such condition the oxygen permeation flux deteriorates with time), the oxygen permeation flux is really stable under the CH4CO2-O-2 reforming condition.
Resumo:
A combined EDTA-citrate complexing method was developed for the easy preparation of mixed oxygen-ionic and electronic conducting dense ceramic membrane for oxygen separation. The nea method takes the advantage of lower calcination temperature for phase formation. lower membrane sintering temperature and higher relative density over the standard ceramic method.
Resumo:
A high quality NaA zeolite membrane, which shows a H-2/n-C4H10 permselectivity of 106, has been synthesized on a seeded alpha-Al2O3 support by a multistage synthesis method.
Resumo:
NaA zeolite membrane was successfully synthesized on the porous alpha-Al2O3 support by microwave heating. The synthesis of NaA zeolite membrane in the microwave field only needs 15 min and the synthesis time is 10 times shorter than that by conventional heating. SEM characterization indicates that the zeolite crystals in the NaA zeolite membrane synthesized by microwave heating are uniform in size; the membrane thickness is about 4 mu m and is thinner than that of the NaA zeolite membrane synthesized by conventional heating. Gas permeation studies indicate that the permeances of the NaA zeolite membrane synthesized by microwave heating are 3-4 times higher than those of the NaA zeolite membrane synthesized by conventional heating, while their permselectivities are comparable.