938 resultados para ESTUARIES
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
The Potengi River estuary has been affected by various anthropogenic factors over the years, as periodic dredging, industrial and domestic waste, traffic and other factors, causing various environmental disasters, including the notorious ecological accident in July 2007, which covered the municipalities of São Gonçalo do Amarante, Macaíba and Natal. Foraminifera serve as viable study tools in these environments; they are able to identify ecologically stressed environments, pointing out hydrographic changes and depositional environments in estuaries. The necessity to check the differences in environmental gradients in places anthropically impacted in Potengi River and adjacent inner shelf through species of foraminifera, and, the responses of these organisms to physical, chemical and geological factors is to provide baseline in the diagnosis of environments. The results show the dominance of opportunistic Ammonia tepida, Bolivina striatula, Quinqueloculina patagonica and Q. miletti especially in regions close to shrimp farms and Baldo Channel sewage in fine grain environments; and Q. lamarckiana indicates penetration of the saline waters in Potengi River. The occurrence of low-salinity tolerant foraminiferal species typical of mangrove environments as Trochammina inflata and T. squamata in Potengi River Channel suggest they probably could have been transported from mangrove area near the Potengi river mouth to the inner shelf regions. These findings suggest Potengi River is able to export mixohaline and mangrove organisms to inner shelf. Two distinct environments were observed, the outermost area is more influenced by marine influence and the innermost area is less influenced. Calcareous and agglutinated species dominate Potengi River, while mouth and inner shelf areas are dominated by calcareous, agglutinated and porcelaneous species, which are typical of highly saline and hydrodynamic environments and the contributive factors that controls foraminiferal distribution were balance of marine and freshwater currents, grain size, availability of CaCO3 and organic matter.
Resumo:
The Potengi River estuary has been affected by various anthropogenic factors over the years, as periodic dredging, industrial and domestic waste, traffic and other factors, causing various environmental disasters, including the notorious ecological accident in July 2007, which covered the municipalities of São Gonçalo do Amarante, Macaíba and Natal. Foraminifera serve as viable study tools in these environments; they are able to identify ecologically stressed environments, pointing out hydrographic changes and depositional environments in estuaries. The necessity to check the differences in environmental gradients in places anthropically impacted in Potengi River and adjacent inner shelf through species of foraminifera, and, the responses of these organisms to physical, chemical and geological factors is to provide baseline in the diagnosis of environments. The results show the dominance of opportunistic Ammonia tepida, Bolivina striatula, Quinqueloculina patagonica and Q. miletti especially in regions close to shrimp farms and Baldo Channel sewage in fine grain environments; and Q. lamarckiana indicates penetration of the saline waters in Potengi River. The occurrence of low-salinity tolerant foraminiferal species typical of mangrove environments as Trochammina inflata and T. squamata in Potengi River Channel suggest they probably could have been transported from mangrove area near the Potengi river mouth to the inner shelf regions. These findings suggest Potengi River is able to export mixohaline and mangrove organisms to inner shelf. Two distinct environments were observed, the outermost area is more influenced by marine influence and the innermost area is less influenced. Calcareous and agglutinated species dominate Potengi River, while mouth and inner shelf areas are dominated by calcareous, agglutinated and porcelaneous species, which are typical of highly saline and hydrodynamic environments and the contributive factors that controls foraminiferal distribution were balance of marine and freshwater currents, grain size, availability of CaCO3 and organic matter.
Resumo:
The Kara Sea is an area uniquely suitable for studying processes in the river-sea system. This is a shallow sea, into which two great Siberian rivers, Yenisei and Ob, flow. From 1995 to 2003, the sea was studied by six international expeditions onboard the R/V Akademik Boris Petrov. This publication summarizes the results obtained, within the framework of this project, at the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences. Various hydrogeochemical parameters, concentrations and isotopic composition of organic and carbonate carbon of the sediments, plankton, particulate organic matter, hydrocarbons, and dissolved CO2 were examined throughout the whole sea area at more than 200 sites. The d13C varies from -22 and -24 per mil where Atlantic waters enter the Kara Sea and in the north-eastern part of the water area to -27 per mil in the Yenisei and Ob estuaries. The value of d13C of the plankton is only weakly correlated with the d13C of the organic matter from the sediments and is lower by as much as 3-4 per mil. The paper presents the results obtained from a number of meridional river-sea profiles. It was determined from the relations between the isotopic compositions of plankton and particulate matter that the river waters carry material consisting of 70% detrital-humus matter and 30% planktonogenic material in the river part, and the material contained in the offshore waters consists of 30% terrigenous components, with the contribution of bioproducers amounting to 70%. The carbon isotopic composition of the plankton ranges from -29 to -35 per mil in the riverine part, from -28 to -27 per mil in the estuaries, and from -27.0 to -25 per mil in the marine part. The relative lightness of the carbon isotopic composition of plankton in Arctic waters is explained by the temperature effect, elevated CO2 concentrations, and long-distance CO2 supply to the sea with river waters. The data obtained on the isotopic composition of CO2 in the surface waters of the Kara Sea were used to map the distribution of d13C. The complex of hydrocarbon gases extracted from the waters included methane, C2-C5, and unsaturated C2=-C4= hydrocarbons, for which variations in the concentrations in the waters were studied along river-estuary-sea profiles. The geochemistry of hydrocarbon gases in surface fresh waters is characterized by comparable concentrations of methane (0.3-5 µl/l) and heavier hydrocarbons, including unsaturated ones. Microbiological methane with d13C from -105 to -90 per mil first occurs in the sediments at depths of 40-200 cm. The sediments practically everywhere display traces of methane oxidation in the form of a shift of the d13C of methane toward higher values and the occurrence of autogenic carbonate material, including ikaite, enriched in the light isotope. Ikaite (d13C from -25 to -60 per mil) was found and examined in several profiles. The redox conditions in the sediments varied from normal in the southern part of the sea to highly oxidized along the Novaya Zemlya Trough. Vertical sections through the sediments of the latter exemplify the complete suppression of the biochemical activity of microorganisms. Our data provide insight into the biogeochemistry of the Kara Sea and make it possible to specify the background values needed for ecological control during the future exploration operations and extraction of hydrocarbons in the Kara Sea.
Resumo:
Among the Siberian shelf seas the Kara Sea is most strongly influenced by riverine runoff with nearly 1500 km fresh water discharge per year. This fresh water, discharged mainly by Ob and Yenisei, contains about 3.1 * 106 and 4.6 * 106 tons of total organic carbon per year, respectively (Gordeev et al. 1996). Little is known about the relevance of this organic material for biological communities, neither for the Kara Sea nor for the adjacent deep basins of the central Arctic Ocean. Aiming at elucidating the fate of fluvial matter transported from the rivers via estuaries into the central Arctic Ocean and the relative importance of marine organic matter being produced such information is crucial. Here we present calculations on the organic carbon demand of the Kara Sea macrozoobenthos based on measured biomass (total wet weight [ww] per 0.25 m ) from quantitative box corer samples and empirical relationships between biomass, annual production, annual respiration, and carbon remineralisation. This bottom-up approach may serve as a first estimate of the carbon remineralization potential of a given zoobenthos community (or area) as long as no data on in situ respiration rates are available. Our data basis comprises 54 stations sampled in summer seasons 1997, 1999 and 2000 in the Kara Sea at water depths between 10 and 68 m. The geographical area represented by stations analysed covers roughly 178 000 km**2, which is about one fifth of the total Kara Sea area. In this area, 290 species of invertebrate macrozoobenthos were identified with polychaeta, Crustacea, mollusca and echinodermata being the most abundant. For all stations analysed, mean biomass values ranged between 4.3 and 778.1 g ww/m**2 with organic carbon demands between 3.5 and 43.2 mg C/m**2/d. For the area of 178 000 km2 a preliminary total consumption of 1.4 * 10**6t Corg/y (equivalent to 21.5 mg C/m**2/d) was calculated for the macrozoobenthos. An extrapolation of our data would lead to an annual carbon demand of about 5-7 * 106 t for the whole Kara Sea macrozoobenthos (or 15.5-21.7 mg C/m2/d).
Resumo:
The South America southern coast exhibits many outcrops with abundant shell beds, from the Pleistocene through the Recent. How much biological information is preserved within these shell beds? Or, what is the actual probability a living community has to leave a fossil record corresponding to these shell deposits? Although ecological and biogeographical aspects might had been pointed, considering these temporal scales, up to the moment there is no taphonomically-oriented studies available. Quantitative comparisons between living (LAs), death (DAs) and fossil assemblages (FAs) are important not only in strictly taphonomic studies, but have grown a leading tool for conservation paleobiology analysis. Comparing LAs, DAs and FAs from estuaries and lagoons in the Rio Grande do Sul Coastal Plain makes possible to quantitatively understand the nature and quantity of biological information preserved in fossil associations in Holocene lagoon facies. As already noted by several authors, spatial scale parts the analysis, but we detected that the FAs refl ects live ones, rather than dead ones, as previously not realized. The results herein obtained illustrates that species present in DA are not as good preserved in recent (Holocene) fossil record as originally thought. Strictly lagoon species are most prone to leave fossil record. The authors consider that the fi delity pattern here observed for estuarine mollusks to be driven by (i) high temporal and spatial variability in the LAs, (ii) spatial mixing in the DA and (iii) differential preservation of shells, due to long residence times in the taphonomically active zone.