949 resultados para ELECTRON-EXCITATION
Resumo:
Triatoma baratai Carcavallo & Jurberg, is a wild (i.e., nonperidomestic) species found in the State of Mato Grosso do Sul (Bodoquena region, county of Bonito), Brazil. Its eggs and nymphs are described here based on optical and scanning electron microscopy. The operculum and exochorion have pentagonal, hexagonal, and heptagonal cells, with small cracks and small random pits. Differences in the eggs and five nymphal instars of T. baratai allow them to be distinguished from the sympatric species Triatoma williami Galvão, Souza & Lima, and from six of the nine members of the Triatoma oliveirai complex. The most useful differentiating characters are in the color, shape of the abdomen, head, and total body length. Keys are provided to separate the eggs and nymphal instars of six of the nine members of the Triatoma oliveirai species complex. Copyright ©2009 Magnolia Press.
Resumo:
This aim of this study was to evaluate the root apex of mandibular premolars regarding the presence of main and accessory foramina. The root apexes from fifty extracted mandibular single-rooted premolars were examined by scanning electron microscopy (SEM). The apical openings had their diameter measured and were identified as main or accessory foramina. Double blinded and calibrated examiners analyzed the SEM photographs and classified the premolar roots into three types, based on the presence and size of the apical openings. Type I: roots with a single main apical foramen and no accessory foramina; type II: roots with a main foramen and one or more accessory foramina; type III: roots with accessory foramina only. For the first premolar, 16 roots were classified as type I (48.48%), 4 as type II (12.12%) and 13 as type III (39.40%). For the second premolars, 10 roots were classified as type I (58.83%), 3 as type II (17.65%) and 4 as type III (23.52%). The high incidence of roots with accessory foramina only (type III), mainly in the first premolar, warns of the need for caution during working length determination and apical debridement.
Resumo:
A new device for irrigation, which presents hydrodynamic activation based on the pressure-suction technology, has recently been introduced to the market: the Rinsendo system. This study compared the efficacy of the Rinsendo system and conventional (manualdynamic) irrigation in the removal of debris from the root canal walls, using scanning electron microscopy (SEM). Twenty mandibular premolars with completely formed roots were selected and randomly divided into group 1 (irrigation with the Rinsendo system) and group 2 (conventional irrigation). The canals were irrigated with 1 ml of saline at each change of instrument. instrumentation started with a #15 K file and continued up to a #40 K file, which was standardized as the working length instrument. Then, the teeth were sectioned in buccolingual direction and the halves were sputter-coated with gold and examined by SEM. The apical, middle and cervical root canal thirds were evaluated, and the results were analyzed statistically by the Mann-Whitney test for comparison between methods, Kruskal-Wallis test for comparison among thirds, and Miller test for individual comparisons. A significance level of 5% was set for all analyses. The results did not show significant differences (p>0.05) between methods at each third and among thirds for each technique analyzed individually. in conclusion, there was no difference in the cleaning ability of the Rinsendo system and conventional irrigation.
Resumo:
This study evaluated the efficacy of 2 types of rotary instruments employed in association with sodium hypochlorite (NaOCl) or EDTA in removing calcium hydroxide (CH) residues from root canals dentin walls. Forty-two mandibular human incisors were instrumented with the ProTaper System up to F2 instrument, irrigated with 2.5% NaOCl followed by 17% EDTA and filled with a CH intracanal dressing. After 7 days, the CH dressing was removed using 4 techniques: NiTi rotary instrument size 25, 0.06 taper (K3 Endo) and irrigation with 17% EDTA (Group 1), NiTi rotary F1 instrument (ProTaper) and irrigation with 17% EDTA (Group 2), NiTi rotary instrument size 25, 0.06 taper and irrigation with 2.5% NaOCl (Group 3) and NiTi rotary F1 instrument and irrigation with 2.5% NaOCl (Group 4). Two roots without intracanal dressing were used as negative controls. Teeth were evaluated by scanning electron microscopy, in the cervical and apical canal thirds. None of the techniques removed the CH dressing completely. In the apical and cervical thirds, F1 instrument was better than instrument size 25, 0.06 taper in removing CH residues (p<0.05), regardless of the final irrigating solution. No difference was found between the irrigating solutions in the groups of F1 instrument and of instrument size 25, 0.06 taper (p>0.05). The negative controls had no CH residues on the dentin walls. In conclusion, the ProTaper F1 instrument was better than K3 Endo instrument size 25, 0.06 taper in the removal of CH intracanal medication, regardless of irrigating solution used.
Resumo:
The presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Support Vector Machines, Optimum-Path Forest, Self Organizing Maps and a Bayesian classifier. Experimental results demonstrated that all classifiers achieved similar recognition rates with good results validated by an expert in metallographic image analysis. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
ITO nanowires were synthesized by carbothermal reduction process, using a co-evaporation method, and have controlled size, shape, and chemical composition. The electrical measurements of nanowires showed they have a resistance of about 102 Ω. In order to produce nanocomposites films, nanowires were dispersed in toluene using an ultrasonic cleaner, so the PMMA polymer was added, and the system was kept under agitation up to obtain a clear suspension. The PMMA polymer was filled with 1, 2, 5 and 10% in weight of nanowires, and the films were done by tape casting. The results showed that the electrical resistance of nanocomposites changed by over 7 orders of magnitude by increasing the amount of filler, and using 5 wt% of filler the composite resistance decreased from 1010 Ω to about 104 Ω, which means that percolation threshold of wires occurred at this concentration. This is an interesting result once for nanocomposites filled with ITO nanoparticles is necessary about 18% in weight to obtain percolation. The addition of filler up to 10 wt% decreased the resistance of the composite to 103 Ω, which is a value close to the resistance of wires. The composites were also analyzed by transmission electron microscopy (TEM), and the TEM results are in agreement with the electrical ones about percolation of nanowires. These results are promising once indicates that is possible to produce conductive and transparent in the visible range films by the addition of ITO nanowires in a polymeric matrix using a simple route. © 2011 Materials Research Society.
Resumo:
This paper presents a nonlinear dynamic analysis of a flexible portal frame subjected to support excitation, which is provided by an electro-dynamical shaker. The problem is reduced to a mathematical model of four degrees of freedom and the equations of motion are derived via Lagrangian formulation. The main goal of this study is to investigate the dynamic interactions between a flexible portal frame and a non-ideal support excitation. The numerical analysis shows a complex behavior of the system, which can be observed by phase spaces, Poincaŕ sections and bifurcation diagrams. © 2012 American Institute of Physics.
Resumo:
The purpose of this study was to evaluate commercially pure titanium implant surfaces modified by laser beam (LS) and LS associated with sodium silicate (SS) deposition, and compare them with machined surface (MS) and dual acid-etching surfaces (AS) modified. Topographic characterization was performed by scanning electron microscopy-X-ray energy dispersive spectroscopy (SEM-EDX), and by mean roughness measurement before surgery. Thirty rabbits received 60 implants in their right and left tibias. One implant of each surface in each tibia. The implants were removed by reverse torque for vivo biomechanical analysis at 30, 60, and 90 days postoperative. In addition, the surface of the implants removed at 30 days postoperative was analyzed by SEM-EDX. The topographic characterization showed differences between the analyzed surfaces, and the mean roughness values of LS and SS were statistically higher than AS and MS. At 30 days, values removal torque LS and SS groups showed a statistically significant difference (p < 0.05) when compared with MS and AS. At 60 days, groups LS and SS showed statistically significant difference (p < 0.05) when compared with MS. At 90 days, only group SS presented statistically higher (p < 0.05) in comparison with MS. The authors can conclude that physical chemistry properties and topographical of LS and SS implants increases bone-implant interaction and provides higher degree of osseointegration when compared with MS and AS. © 2012 Wiley Periodicals, Inc.
Resumo:
Erbium Er3+ and ytterbium Yb3+ codoped fluoro-phosphate glasses belonging to the system NaPO3-YF 3-BaF2-CaF2 have been prepared by the classical melt-quenching technique. Glasses containing up to 10 wt% of erbium and ytterbium fluorides have been obtained and characterized using differential scanning calorimetry (DSC) and UV-visible and near-infrared spectroscopy. Transparent and homogeneous glass-ceramics have been then reproducibly synthetized by appropriate heat treatment above glass transition temperature of a selected parent glass. Structural investigations of the crystallization performed through X-ray diffractometry (XRD) and scanning electron microscopy (SEM) have evidenced the formation of fluorite-type cubic crystals based during the devitrification process. Finally, infrared to visible up-conversion emission upon excitation at 975 nm has been studied on the Er3+ and Yb 3+ codoped glass-ceramics as a function of thermal treatment time. A large enhancement of intensity of the up-conversion emissions-about 150 times- has been observed in the glass-ceramics if compared to the parent glass one, suggesting an incorporation of the rare-earth ions (REI) into the crystalline phase. © 2012 The American Ceramic Society.
Resumo:
X-band electron spin resonance (ESR) measurements have been performed on a conducting free-standing film of polyaniline plasticized and protonated with di-n-dodecyl ester of sulfosuccinic acid (DDoESSA). The magnetic field was applied parallel and perpendicular to the plane of the film. At around 75 K a transition is observed from Pauli susceptibility to a localized state in which the spin 1/2 polarons behave as spin 1/2 dimers. A rough estimation of the intradimer and interdimer exchange constants is obtained. Below 5 K, ESR data reveal a weak ferromagnetism with the Dzyaloshinskii-Moriya vector mainly oriented in the plane of the film. The existence of a relatively well-defined n-fold axis along the chain direction in the crystalline regions confers a symmetry compatible with such analysis. © 2013 IOP Publishing Ltd.
Resumo:
Correlative fractography is a new expression proposed here to describe a new method for the association between scanning electron microscopy (SEM) and light microscopy (LM) for the qualitative and quantitative analysis of fracture surfaces. This article presents a new method involving the fusion of one elevation map obtained by extended depth from focus reconstruction from LM with exactly the same area by SEM and associated techniques, as X-ray mapping. The true topographic information is perfectly associated to local fracture mechanisms with this new technique, presented here as an alternative to stereo-pair reconstruction for the investigation of fractured components. The great advantage of this technique resides in the possibility of combining any imaging methods associated with LM and SEM for the same observed field from fracture surface. © Microscopy Society of America 2013.
Resumo:
In this letter, we report, for the first time, the real-time in situ nucleation and growth of Ag filaments on α-Ag2 WO4 crystals driven by an accelerated electron beam from an electronic microscope under high vacuum. We employed several techniques to characterise the material in depth. By using these techniques combined with first-principles modelling based on density functional theory, a mechanism for the Ag filament formation followed by a subsequent growth process from the nano-to micro-scale was proposed. In general, we have shown that an accelerated electron beam from an electronic microscope under high vacuum enables in situ visualisation of Ag filaments with subnanometer resolution and offers great potential for addressing many fundamental issues in materials science, chemistry, physics and other fields of science.
Resumo:
The description of the larva of Amblyomma romitii Tonelli-Rondelli is based on optical and scanning electron microscopy. Larvae were obtained under laboratory conditions from an engorged female collected on capybara from Rurópolis municipality, State of Pará, Northern Brazil. Several characters are presented including the chaetotaxy of idiosoma, palpi and Haller's organ. The larval porotaxy (topographical and numerical patterns of integumentary structures) was presented and compared to that of the other Amblyomma spp. larvae. The mitochondrial 16S rDNA partial sequence of A. romitii generated in the present study was aligned with sequences previously determined for other Amblyomma species available in Genbank and with some species presently sequenced. The larval morphology of A. romitii and other Neotropical Amblyomma spp. larvae is discussed as well as the DNA sequence and its phylogenetic position among other species of the genus. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
Thin films of the semiconductor NiO are deposited using a straightforward combination of simple and versatile techniques: the co-precipitation in aqueous media along with the dip- coating process. The obtained material is characterized by gravimetric/differential thermal analysis (TG-DTA) and X-ray diffraction technique. TG curve shows 30 % of total mass loss, whereas DTA indicates the formation of the NiO phase about 578 K (305 C). X-ray diffraction (XRD) data confirms the FCC crystalline phase of NiO, whose crystallinity increases with thermal annealing temperature. UV-Vis optical absorption measurements are carried out for films deposited on quartz substrate in order to avoid the masking of bandgap evaluation by substrate spectra overlapping. The evaluated bandgap is about 3.0 eV. Current-voltage (I-V) curves measured for different temperatures as well as the temperature-dependent resistivity data show typical semiconductor behavior with the resistivity increasing with the decreasing of temperature. The Arrhenius plot reveals a level 233 meV above the conduction band top, which was attributed to Ni2+ vacancy level, responsible for the p-type electrical nature of NiO, even in undoped samples. Light irradiation on the films leads to a remarkable behavior, because above bandgap light induced a resistivity increase, despite the electron-hole generation. This performance was associated with excitation of the Ni 2+ vacancy level, due to the proximity between energy levels. © 2012 Springer Science+Business Media New York.
Resumo:
Aluminum acetylacetonate has been reported as a precursor for the deposition of alumina films using different approaches. In this work, alumina-containing films were prepared by plasma sputtering this compound, spread directly on the powered lowermost electrode of a reactor, while grounding the substrates mounted on the topmost electrode. Radiofrequency power (13.56 MHz) was used to excite the plasma from argon atmosphere at a working pressure of 11 Pa. The effect of the plasma excitation power on the properties of the resulting films was studied. Film thickness and hardness were measured by profilometry and nanoindentation, respectively. The molecular structure and chemical composition of the layers were analyzed by Fourier transform infrared spectroscopy and energy dispersive spectroscopy. Surface micrographs, obtained by scanning electron microscopy, allowed the determination of the sample morphology. Grazing incidence X-ray diffraction was employed to determine the structure of the films. Amorphous organic layers were deposited with thicknesses of up to 7 μm and hardness of around 1.0 GPa. The films were composed by aluminum, carbon, oxygen and hydrogen, their proportions being strongly dependent on the power used to excite the plasma. A uniform surface was obtained for low-power depositions, but particulates and cracks appeared in the high-power prepared materials. The presence of different proportions of aluminum oxide in the coatings is ascribed to the different activations promoted in the metalorganic molecule once in the plasma phase. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.