985 resultados para Dust Devils Tracks
Resumo:
Mineral dust aerosols play a major role in present and past climates. To date, we rely on climate models for estimates of dust fluxes to calculate the impact of airborne micronutrients on biogeochemical cycles. Here we provide a new global dust flux data set for Holocene and Last Glacial Maximum (LGM) conditions based on observational data. A comparison with dust flux simulations highlights regional differences between observations and models. By forcing a biogeochemical model with our new data set and using this model's results to guide a millennial-scale Earth System Model simulation, we calculate the impact of enhanced glacial oceanic iron deposition on the LGM-Holocene carbon cycle. On centennial timescales, the higher LGM dust deposition results in a weak reduction of <10?ppm in atmospheric CO2 due to enhanced efficiency of the biological pump. This is followed by a further ~10?ppm reduction over millennial timescales due to greater carbon burial and carbonate compensation.
Resumo:
The large-diameter piston core LL44-GPC3 from the central North Pacific Ocean records continuous sedimentation of eolian dust since the Late Cretaceous. Two intervals resolved by Nd and Pb isotopic data relate to dust coming from America (prior to ~40 Ma) and dust coming from Asia (since ~40 Ma). The Intertropical Convergence Zone (ITCZ) separates these depositional regimes today and may have been at a paleolatitude of ~23°N prior to 40 Ma. Such a northerly location of the ITCZ is consistent with sluggish atmospheric circulation and warm climate for the Northern Hemisphere of the early to middle Eocene. Since ~40 Ma, correlations between Nd (~7.55 > epsilon-Nd(t) > ~10.81) and Pb (18.625 < 206/4Pb < 18.879; 15.624 < 207/4Pb < 15.666; 38.611 < 208/4Pb < 38.960; 0.8294 < 207/6Pb < 0.8389; 2.0539 < 208/6Pb < 2.0743) isotopes reflect the progressive drying of central Asia triggered by the westward retreat of the paleo-Tethys. Comparisons between the changes with time in the isotopically well-defined dust flux and Nd and Pb isotopic compositions of Pacific deep water allow one to draw two major conclusions: (1) dust-bound Nd became a resolvable contribution to Pacific seawater only after the one order of magnitude increase in dust flux starting at ~3.5 Ma. Therefore eolian Nd was unimportant for Pacific seawater Nd prior to 3.5 Ma. (2) The lack of a response of Pacific deep water Pb to this huge flux increase suggests that dust-bound Pb has never been important. Instead, mobile Pb associated with island arc volcanic exhalatives probably consists of a significant contribution to Pacific deep water Pb and possibly to seawater elsewhere far away from landmasses.
Resumo:
Fluxes of lithogenicmaterial and fluxes of three palaeo productivity proxies (organic carbon, biogenic opal and alkenones) over the past 100,000 years were determined using the 230Th-normalization method in three sediment cores from the Subantarctic South Atlantic Ocean. Features in the lithogenic flux record of each core correspond to similar features in the record of dust deposition in the EPICA Dome C ice core. Biogenic fluxes correlate with lithogenic fluxes in each sediment core. Our preferred interpretation is that South American dust, most probably from Patagonia, constitutes a major source of lithogenic material in Subantarctic South Atlantic sediments, and that past biological productivity in this region responded to variability in the supply of dust, probably due to biologically available iron carried by the dust. Greater nutrient supply as well as greater nutrient utilization (stimulated by dust) contributed to Subantarctic productivity during cold periods, in contrast to the region south of the Antarctic Polar Front (APF), where reduced nutrient supply during cold periods was the principal factor limiting productivity. The anti-phased patterns of productivity on opposite sides of the APF point to shifts in the physical supply of nutrients and to dust as cofactors regulating productivity in the Southern Ocean.