1000 resultados para Drinkable Water
Resumo:
Crop seasonal sensitivity to water stress is concerned with how to control water stress levels to optimise yield or profitability. It deals with when we can reduce irrigation and impose moderate water deficits without affecting our target, and when we can apply water to avoid too much stress.
Resumo:
The infiltration of river water into aquifers is of high relevance to drinking-water production and is a key driver of biogeochemical processes in the hyporheic and riparian zone, but the distribution and quantification of the infiltrating water are difficult to determine using conventional hydrological methods (e.g., borehole logging and tracer tests). By time-lapse inverting crosshole ERT (electrical resistivity tomography) monitoring data, we imaged groundwater flow patterns driven by river water infiltrating a perialpine gravel aquifer in northeastern Switzerland. This was possible because the electrical resistivity of the infiltrating water changed during rainfall-runoff events. Our time-lapse resistivity models indicated rather complex flow patterns as a result of spatially heterogeneous bank filtration and aquifer heterogeneity. The upper part of the aquifer was most affected by the river infiltrate, and the highest groundwater velocities and possible preferential flow occurred at shallow to intermediate depths. Time series of the reconstructed resistivity models matched groundwater electrical resistivity data recorded on borehole loggers in the upper and middle parts of the aquifer, whereas the resistivity models displayed smaller variations and delayed responses with respect to the logging data. in the lower part. This study demonstrated that crosshole ERT monitoring of natural electrical resistivity variations of river infiltrate could be used to image and quantify 3D bank filtration and aquifer dynamics at a high spatial resolution.
Resumo:
This report contains information about Iowa's public drinking water program for the calendar year 2014. Included in the report are descriptions of Iowa's systems, monitoring and reporting requirements of the systems, and violations incurred during the year. This report meets the federal Safe Drinking Water Act's requirement of an annual report on violations of national primary drinking water regulations by public water supply systems in Iowa.
Resumo:
Skin water loss of preterm infants, nursed naked in incubators under thermoneutral conditions, was assessed by a method based on the measurement of water vapor pressure gradient close to the skin surface. The corresponding skin evaporative heat loss was calculated using an energy equivalent of 0.58 kcal/g water vaporised. During the first 5 weeks of life, 128 sets of measurements were made on 56 infants whose gestational age ranged from 28 to 37 weeks. In the first week of life, infants of less than 30 weeks of gestation had substantially higher transepidermal water loss (TEWL) and skin evaporative heat loss (skin EHL) (41.5 +/- 11.5 g/kg X day TEWL; 24.1 +/- 6.5 kcal/kg X day skin EHL) than infants of 34 weeks and greater (11.1 +/- 4.1 g/kg X day; 6.4 +/- 2.4 kcal/kg X day). Infants of 30-33 weeks of gestation had intermediate values (22.4 +/- 7.6 g/kg X day; 13 +/- 4.4 kcal/kg X day). From the third week of life on, TEWL was similar for all preterm infants, i.e. 14.2 +/- 2.6 to 12.7 +/- 1.9 g/kg X day and corresponds to skin EHL of 8.2 +/- 1.5 to 7.4 +/- 1.1 kcal/kg X day. There was a significant inverse relationship between gestational age and TEWL and also between postnatal age and TEWL. In an additional group of 7 preterm infants (30-34 weeks of gestation, mean postnatal age of 21 +/- 9 days) transepidermal water loss and energy expenditure were measured simultaneously. The skin evaporative heat loss (8.8 +/- 2.5 kcal/kg X day) accounted for 17 +/- 5% of energy expenditure (53.3 +/- 4.1 kcal/kg X day). This study emphasizes that in infants of less than 30 weeks of gestation, the transepidermal water loss is of great importance and makes a major contribution to water and heat balances.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.
Resumo:
It is well established that at ambient and supercooled conditions water can be described as a percolating network of H bonds. This work is aimed at identifying, by neutron diffraction experiments combined with computer simulations, a percolation line in supercritical water, where the extension of the H-bond network is in question. It is found that in real supercritical water liquidlike states are observed at or above the percolation threshold, while below this threshold gaslike water forms small, sheetlike configurations. Inspection of the three-dimensional arrangement of water molecules suggests that crossing of this percolation line is accompa- nied by a change of symmetry in the first neighboring shell of molecules from trigonal below the line to tetrahedral above.
Resumo:
Introduction: As part of the roadside development along the Interstate Highway System, the Iowa State Highway Commission has constructed eight pair of rest area facilities. Furthermore, two pair are presently under construction with an additional two pair proposed for letting in 1967. An additional nine and one-half pairs of rest areas are in the planning phase, a grand total of 45 rest Brea buildings. The facilities existing were planned and designed in a relatively short period of time. The rest area facilities are unusual in terms of water use, water demand rates, and the fact that there are no applicable guidelines from previous installations. Such facilities are a pioneering effort to furnish a service -which the travelling public desires and will use. The acceptance and current use of the existing facilities shows that the rest areas do provide a service the public will use and appreciate. The Iowa State Highway Commission is to be congratulated for this· pioneering effort. However there are problems, as should be expected when design of a new type of facility has no past operating experience to use as a guide. Another factor which enters is that a rest area facility is quite different and rather unrelated to engineering in the highway field of practice. Basically, the problems encountered can be resolved into several areas, namely 1) maintenance problems in equipment due to 2) insufficient capacity of several other elements of the water systems, and 3) no provisions for water quality control. This study and report is supposed to essentially cover the review of the rest areas, either existing and under construction or letting. However, the approach used has been somewhat different. Several basic economically feasible water system schemes have been developed which are· adaptable to the different well capacities and different water qualities encountered. These basic designs are used as a guide in recommending modifications to the existing rest area water systems, anticipating that the basic designs will be used for future facilities. The magnitude of the problems involved is shown by the fact that the projected water use and demand variations of each rest area building is equivalent to the water supply for a community of about 100 people. The problems of proper operation and maintenance of an eventual thirty to forty-five such facilities are gigantic. For successful operation the rest area water systems must have a high degree of standardization and interchangeability of all elements of the water systems, even if it means a limited degree of over-design in some rest area facilities.
Resumo:
Obtaining the desired dry weight in dialysis patients is challenging once residual diuresis has disappeared, considering the trend of increasing dietary salt intake and shortening dialysis time over the last 40 years. We describe the case of a 55-year-old patient of Sudanese origin, who presented excessive interdialytic weight gain and hypertension on maintenance hemodialysis. After failure of conservative measures, a therapy of daily hot water baths of 30minutes each on non-dialysis days was introduced. All clinical parameters improved, including potassium profile. In this article, we review the history, pathophysiological mechanisms, efficacy and possible side effects of this interesting, somewhat forgotten technique.
Resumo:
A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.