990 resultados para Dow Chemical Company
Resumo:
Plasmonic resonance at terahertz (THz) frequencies can be achieved by gating graphene grown via chemical vapour deposition (CVD) to a high carrier concentration. THz time domain spectroscopy of such gated monolayer graphene shows resonance features around 1.6 THz, which appear as absorption peaks when the graphene is electrostatically p-doped and change to enhanced transmission when the graphene is n-doped. Superimposed on the Drude-like frequency response of graphene, these resonance features are related to the inherent poly-crystallinity of CVD graphene. An understanding of these features is necessary for the development of future THz optical elements based on CVD graphene. © 2013 AIP Publishing LLC.
Oxygen carrier dispersion in inert packed beds to improve performance in chemical looping combustion
Resumo:
Various packed beds of copper-based oxygen carriers (CuO on Al2O3) were tested over 100 cycles of low temperature (673K) Chemical Looping Combustion (CLC) with H2 as the fuel gas. The oxygen carriers were uniformly mixed with alumina (Al2O3) in order to investigate the level of separation necessary to prevent agglomeration. It was found that a mass ratio of 1:6 oxygen carrier to alumina gave the best performance in terms of stable, repeating hydrogen breakthrough curves over 100 cycles. In order to quantify the average separation achieved in the mixed packed beds, two sphere-packing models were developed. The hexagonal close-packing model assumed a uniform spherical packing structure, and based the separation calculations on a hypergeometric probability distribution. The more computationally intensive full-scale model used discrete element modelling to simulate random packing arrangements governed by gravity and contact dynamics. Both models predicted that average 'nearest neighbour' particle separation drops to near zero for oxygen carrier mass fractions of x≥0.25. For the packed bed systems studied, agglomeration was observed when the mass fraction of oxygen carrier was above this threshold. © 2013 Elsevier B.V.
Resumo:
All-chemical vapor deposited silicon nitride / monolayer graphene TFTs have been fabricated. Polychromatic Raman spectroscopy shows high quality monolayer graphene channels with uniform coverage and significant interfacial doping at the source-drain contacts. Nominal mobilities of approximately 1900 cm 2V-1s-1 have been measured opening up a potentially useful platform for analogue and RFR-based applications fabricated through allchemical vapor deposition processes. © The Electrochemical Society.
Resumo:
We analyze the relationship between the average wall number (N) and the diameter (d) for carbon nanotubes (CNTs) grown by chemical vapour deposition. It is found that N depends linearly on d for diameters in the range of 2.5-10 nm, while single wall nanotubes predominate for diameters under about 2.1 nm. The linear relationship is found to depend somewhat on the growth conditions. It is also verified that the mean diameter depends on the diameter of the originating catalyst nanoparticle, and thus on the initial catalyst thickness where a thin film catalyst is used. This simplifies the characterisation of CNTs by electron microscopy. We also find a linear relationship between nanotube diameter and initial catalyst film thickness. © 2013 AIP Publishing LLC.
Resumo:
A synthetic strategy for fabricating a dense amine functionalized self-assembled monolayer (SAM) on hydroxylated surfaces is presented. The assembly steps are monitored by X-ray photoelectron spectroscopy, Fourier transform infrared- attenuated total reflection, atomic force microscopy, variable angle spectroscopic ellipsometry, UV-vis surface spectroscopy, contact angle wettability, and contact potential difference measurements. The method applies alkylbromide-trichlorosilane for the fabrication of the SAM followed by surface transformation of the bromine moiety to amine by a two-step procedure: S(N)2 reaction that introduces the hidden amine, phthalimide, followed by the removal of the protecting group and exposing the free amine. The use of phthalimide moiety in the process enabled monitoring the substitution reaction rate on the surface (by absorption spectroscopy) and showed first-order kinetics. The simplicity of the process, nonharsh reagents, and short reaction time allow the use of such SAMs in molecular nanoelectronics applications, where complete control of the used SAM is needed. The different molecular dipole of each step of the process, which is verified by DFT calculations, supports the use of these SAMs as means to tune the electronic properties of semiconductors and for better synergism between SAMs and standard microelectronics processes and devices.
Resumo:
Highly sensitive biosensor for detection of acetylcholine (ACh) and competitive acetylcholinesterase (AChE) inhibitor, eserine, is investigated. Peculiar microelectronic configuration of an ion-sensitive field-effect transistor (ISFET) in addition to a right choice of the pH-transducing nanolayers allows recording a response of the enzyme-modified ISFET (EnFET) to a wide range of ACh concentrations. We demonstrate a remarkable improvement of at least three orders of magnitude in dose response to ACh. Described bioelectronic system reveals clear response, when the catalytic activity of the immobilized AChE is inhibited in a reversible manner by eserine, competitive inhibitor of AChE. ©2007 IEEE.
Resumo:
The concept of co-catalytic layer structures for controlled laser-induced chemical vapor deposition of carbon nanotubes is established, in which a thin Ta support layer chemically aids the initial Fe catalyst reduction. This enables a significant reduction in laser power, preventing detrimental positive optical feedback and allowing improved growth control. Systematic study of experimental parameters combined with simple thermostatic modeling establishes general guidelines for the effective design of such catalyst/absorption layer combinations. Local growth of vertically aligned carbon nanotube forests directly on flexible polyimide substrates is demonstrated, opening up new routes for nanodevice design and fabrication.
Resumo:
The findings presented herein show that the electronic properties of CVD graphene on nickel can be altered from metallic to semiconducting by introducing oxygen adsorbates via UV/ozone or oxygen plasma treatment. These properties can be partially recovered by removing the oxygen adsorbates via vacuum annealing treatment. The effect of oxidation is studied by scanning tunneling microscopy/spectroscopy (STM/STS) and X-ray photoelectron spectroscopy (XPS). As probed by STM/STS, an energy gap opening of 0.11-0.15 eV is obtainable as the oxygen/carbon atomic ratio reaches 13-16%. The corresponding XPS spectra show a significant monotonic increase in the concentration of oxygenated functional groups due to the oxidation treatments. This study demonstrates that the opening of energy gap in CVD graphene can be reasonably controlled by a combination of UV/ozone or oxygen plasma treatment and vacuum annealing treatment. © 2013 Elsevier B.V.
Resumo:
Chemical-looping combustion (CLC) has the inherent property of separating the product CO2 from flue gases. Instead of air, it uses an oxygen carrier, usually in the form of a metal oxide, to provide oxygen for combustion. All techniques so far proposed for chemical looping with solid fuels involve initially the gasification of the solid fuel in order for the gaseous products to react with the oxygen carrier. Here, the rates of gasification of coal were compared when gasification was undertaken in a fluidised bed of either (i) an active Fe-based oxygen carrier used for chemical looping or (ii) inert sand. This enabled an examination of the ability of chemical looping materials to enhance the rate of gasification of solid fuels. Batch gasification and chemical-looping combustion experiments with a German lignite and its char are reported, using an electrically-heated fluidised bed reactor at temperatures from 1073 to 1223 K. The fluidising gas was CO2 in nitrogen. The kinetics of the gasification were found to be significantly faster in the presence of the oxygen carrier, especially at temperatures above 1123 K. A numerical model was developed to account for external and internal mass transfer and for the effect of the looping agent. The model also included the effects of the evolution of the pore structure at different conversions. The presence of Fe2O3 led to an increase in the rate of gasification because of the rapid oxidation of CO by the oxygen carrier to CO2. This resulted in the removal of CO and maintained a higher mole fraction of CO2 in the mixture of gas around the particle of char, i.e. within the mass transfer boundary layer surrounding the particle. This effect was most prominent at about 20% conversion when (i) the surface area for reaction was at its maximum and (ii) because of the accompanying increase in porosity and pore size, intraparticle resistance to gas mass transfer within the particle of char had fallen, compared with that in the initial particle. Excellent agreement was observed between the rates predicted by the numerical model and those observed experimentally. ©2013 Elsevier Ltd. All rights reserved.
Resumo:
Our studies investigated the physico-chemical properties of alkaline phosphatase excreted by D. magna. This cladoceran mainly released alkaline phosphatase, though it also released a small amount of acid phosphatase. The alkaline phosphatase showed a broad pH optimum (8.05-10.0), and had a broad optimum temperature (30-35 degrees C) with a temperature coefficient (Q(10)) of 2.45. The K-m of the enzyme is 0.15 +/- 0.02 mM when p-nitrophenyl phosphate is used as a substrate, and the V-max is 0.43 +/- 0.01 mu M pNP mg(-1) DW h(-1). Even though alkaline phosphatase had been incubated in chloroform saturated with WC medium for 13 days, its activity was 54% that of the original. The enzyme was strongly inactivated by EDTA, and appeared to be zinc dependent. The alkaline phosphatase activity remained constant when D. magna was fed different quantities of Chlorella sp. The sensitivity of D. magna phosphatase activity to phosphate was time-dependent. During the first 16 hrs, the enzyme was insensitive to phosphate addition, after 24 hrs incubation the enzyme became sensitive to phosphate addition.
Resumo:
A method of comparing data on protozoan communities with chemical parameters is presented. Using data from an extensive survey of the River Hanjiang in China, each species of protozoa has been given a species pollution value (SPV) related to its occurrence in waters with different degrees of pollution. A comprehensive chemical index is calculated for each site based on water quality standards for eight chemical parameters. The index is calculated from the relationship between the observed levels of each chemical at a site, compared with the limits of the drinking water quality standards of the People's Republic of China. From the distribution of each species at sites with differing chemical index values, a SPV is calculated. The SPV for each species is obtained by summing the logarithmic value of 10 times the chemical pollution divided by the number of chemical parameters, then divided by the stations where the species occurs. The community pollution value (CPV), which is the average SPVs of all protozoa at a site, is used to evaluate water quality. The CPV has been shown to have a close correlation with the degree of water pollution. It is not necessary for all the protozoa in a sample to have SPVs listed in this paper, provided at least 56% of the protozoa in a sample have an SPV value, the CPV will be applicable.
Resumo:
Hydrodynamic properties of five newly isolated algal extracellular polysaccharides with putative adhesive properties are described, using a combination of size exclusion chromatography, total or 'multi-angle' laser light scattering and analytical ultracentrifugation. The respective polysaccharides had been extracted from four filamentous cyanobacteria: Microcoleus vaginatus, Scytonema javanicum, Phormidium tenue and Nostoc sp. and a coccoid single-cell green. algae Desmococcus olivaceus that had been separated from desert algal crusts of the Chinese Tegger Desert. SEC/MALLS experiments showed that the saccharides had, diverse-weight average molecular weights ranging from 4000 to 250,000 g/mol and all five showed either bi-modal or tri-modal molecular weight distribution profiles. Use of the Mark-Houwink-Kuhn-Sakurada (MHKS) scaling relationship between sedimentation coefficient and (weight average) molecular weight for the five samples, assuming a homologous conformation series revealed an MHKS b exponent of (0.33 +/- 0.04), suggesting a conformation between that of a stiff rod (b similar to 0.18) and a random coil (b similar to 0.4-0.5), i.e. a 'flexible rod' or 'stiff coil'. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
A new Enzyme ImmunoAssay (EIA) for PCDD/F TEQ measurement in extracts of environmental samples was described. The bioassay TEQ which derived from EIA and EROD were compared with each other and with results from chemical analysis. For all environmental samples, the EROD-TEQ is higher than the value from chemical analysis. However, the EIA-TEQ is much more identical with the value from chemical analysis. Our results indicate that the EIA assay is a complementary method to the EROD assay and should be useful as a rapid and sensitive screening tool for environmental samples in many situations. (C) 1999 Elsevier Science Ltd. All rights reserved