941 resultados para Dose de Referência
Resumo:
National and international societies have published guidelines regarding glycaemic control in type-2 diabetes mellitus. Clinical studies have shown that glycaemic control of type-2 diabetes mellitus can be improved using simple algorithms for titration of insulin Glargine (Lantus). It is unclear, to what degree published guidelines are adopted in daily practice in Switzerland.
Resumo:
OBJECTIVE: To evaluate pharmacokinetics of ketamine and norketamine enantiomers after constant rate infusion (CRI) of a subanesthetic dose of racemic ketamine or S-ketamine in ponies. ANIMALS: Five 6-year-old Shetland pony geldings that weighed between 101 and 152 kg. PROCEDURES: In a crossover study, each pony received a CRI of racemic ketamine (loading dose, 0.6 mg/kg; CRI, 0.02 mg/kg/min) and S-ketamine (loading dose, 0.3 mg/kg; CRI, 0.01 mg/kg/min), with a 1-month interval between treatments. Arterial blood samples were collected before and at 5, 15, 30, 45, and 60 minutes during drug administration and at 5, 10, 30, and 60 minutes after discontinuing the CRI. Plasma ketamine and norketamine enantiomers were quantified by use of capillary electrophoresis. Individual R-ketamine and S-ketamine concentration-versus-time curves were analyzed by use of a monocompartmental model. Plasma disposition curves for R-norketamine and S-norketamine were described by estimating the area under the concentration-versus-time curve (AUC), maximum concentration (Cmax), and time until Cmax. RESULTS: Plasma concentrations of S-ketamine decreased and biodegradation products increased more rapidly after S-ketamine CRI, compared with results after racemic ketamine CRI. The R-norketamine was eliminated faster than was the S-norketamine. Significant differences between treatments were found for the AUC of S-ketamine and within the racemic ketamine CRI for the AUC and Cmax of norketamine isomers. CONCLUSIONS AND CLINICAL RELEVANCE: CRI of S-ketamine may be preferable over CRI of racemic ketamine in standing equids because the S-enantiomer was eliminated faster when infused alone instead of as part of a racemic mixture.
Resumo:
OBJECTIVE: To compare anesthesia recovery quality after racemic (R-/S-) or S-ketamine infusions during isoflurane anesthesia in horses. ANIMALS: 10 horses undergoing arthroscopy. PROCEDURES: After administration of xylazine for sedation, horses (n = 5/group) received R-/S-ketamine (2.2 mg/kg) or S-ketamine (1.1 mg/kg), IV, for anesthesia induction. Anesthesia was maintained with isoflurane in oxygen and R-/S-ketamine (1 mg/kg/h) or S-ketamine (0.5 mg/kg/h). Heart rate, invasive mean arterial pressure, and end-tidal isoflurane concentration were recorded before and during surgical stimulation. Arterial blood gases were evaluated every 30 minutes. Arterial ketamine and norketamine enantiomer plasma concentrations were quantified at 60 and 120 minutes. After surgery, horses were kept in a padded recovery box, sedated with xylazine, and video-recorded for evaluation of recovery quality by use of a visual analogue scale (VAS) and a numeric rating scale. RESULTS: Horses in the S-ketamine group had better numeric rating scale and VAS values than those in the R-/S-ketamine group. In the R-/S-ketamine group, duration of infusion was positively correlated with VAS value. Both groups had significant increases in heart rate and mean arterial pressure during surgical stimulation; values in the R-/S-ketamine group were significantly higher than those of the S-ketamine group. Horses in the R-/S-ketamine group required slightly higher end-tidal isoflurane concentration to maintain a surgical plane of anesthesia. Moderate respiratory acidosis and reduced oxygenation were evident. The R-norketamine concentrations were significantly lower than S-norketamine concentrations in the R-/S-ketamine group. CONCLUSIONS AND CLINICAL RELEVANCE: Compared with R-/S-ketamine, anesthesia recovery was better with S-ketamine infusions in horses.
Resumo:
Gamma-radiation exposure of humans is a major public health concern as the threat of terrorism and potential hostile use of radiological devices increases worldwide. We report here the effects of sublethal gamma-radiation exposure on the mouse urinary metabolome determined using ultra-performance liquid chromatography-coupled time-of-flight mass spectrometry-based metabolomics. Five urinary biomarkers of sublethal radiation exposure that were statistically significantly elevated during the first 24 h after exposure to doses ranging from 1 to 3 Gy were unequivocally identified by tandem mass spectrometry. These are deaminated purine and pyrimidine derivatives, namely, thymidine, 2'-deoxyuridine, 2'-deoxyxanthosine, xanthine and xanthosine. Furthermore, the aminopyrimidine 2'-deoxycytidine appeared to display reduced urinary excretion at 2 and 3 Gy. The elevated biomarkers displayed a time-dependent excretion, peaking in urine at 8-12 h but returning to baseline by 36 h after exposure. It is proposed that 2'-deoxyuridine and 2'-deoxyxanthosine arise as a result of gamma irradiation by nitrosative deamination of 2'-deoxycytidine and 2'-deoxyguanosine, respectively, and that this further leads to increased synthesis of thymidine, xanthine and xanthosine. The urinary excretion of deaminated purines and pyrimidines, at the expense of aminopurines and aminopyrimidines, appears to form the core of the urinary radiation metabolomic signature of mice exposed to sublethal doses of ionizing radiation.
Resumo:
The toxicity of long-term immunosuppressive therapy has become a major concern in long-term follow-up of heart transplant recipients. In this respect the quality of renal function is undoubtedly linked to cyclosporin A (CsA) drug levels. In cardiac transplantation, specific CsA trough levels have historically been maintained between 250 and 350 micrograms/L in many centers without direct evidence for the necessity of such high levels while using triple-drug immunosuppression. This retrospective analysis compares the incidence of acute and chronic graft rejection as well as overall mortality between groups of patients with high (250 to 350 micrograms/L) and low (150 to 250 micrograms/L) specific CsA trough levels. A total of 332 patients who underwent heart transplantation between October 1985 and October 1992 with a minimum follow-up of 30 days were included in this study (46 women and 276 men; aged, 44 +/- 12 years; mean follow-up, 1,122 +/- 777 days). Standard triple-drug immunosuppression included first-year specific CsA target trough levels of 250 to 300 micrograms/L. Patients were grouped according to their average creatinine level in the first postoperative year (group I, < 130 mumol/L, n = 234; group II, > or = 130 mumol/L, n = 98). The overall 5-year survival excluding the early 30-day mortality was 92% (group I, 216/232) and 91% (group II, 89/98) with 75% of the mortality due to chronic rejection. The rate of rejection for the entire follow-up period was similar in both groups (first year: group I, 3.2 +/- 2.6 rejection/patient/year; group II, 3.6 +/- 2.7 rejection/patient/year; p = not significant).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The technical feasibility of temporal and spatial fractionations of the radiation dose has been evaluated using synchrotron microbeam radiation therapy for brain tumors in rats. A significant increase in lifespan (216%, p < 0.0001) resulted when three fractions of microbeam irradiation were applied to the tumor through three different ports, orthogonal to each other, at 24 h intervals. However, there were no long-term survivors, and immunohistological studies revealed that 9 L tumors were not entirely ablated.
Resumo:
BACKGROUND: Engineered nanoparticles are becoming increasingly ubiquitous and their toxicological effects on human health, as well as on the ecosystem, have become a concern. Since initial contact with nanoparticles occurs at the epithelium in the lungs (or skin, or eyes), in vitro cell studies with nanoparticles require dose-controlled systems for delivery of nanoparticles to epithelial cells cultured at the air-liquid interface. RESULTS: A novel air-liquid interface cell exposure system (ALICE) for nanoparticles in liquids is presented and validated. The ALICE generates a dense cloud of droplets with a vibrating membrane nebulizer and utilizes combined cloud settling and single particle sedimentation for fast (~10 min; entire exposure), repeatable (<12%), low-stress and efficient delivery of nanoparticles, or dissolved substances, to cells cultured at the air-liquid interface. Validation with various types of nanoparticles (Au, ZnO and carbon black nanoparticles) and solutes (such as NaCl) showed that the ALICE provided spatially uniform deposition (<1.6% variability) and had no adverse effect on the viability of a widely used alveolar human epithelial-like cell line (A549). The cell deposited dose can be controlled with a quartz crystal microbalance (QCM) over a dynamic range of at least 0.02-200 mug/cm(2). The cell-specific deposition efficiency is currently limited to 0.072 (7.2% for two commercially available 6-er transwell plates), but a deposition efficiency of up to 0.57 (57%) is possible for better cell coverage of the exposure chamber. Dose-response measurements with ZnO nanoparticles (0.3-8.5 mug/cm(2)) showed significant differences in mRNA expression of pro-inflammatory (IL-8) and oxidative stress (HO-1) markers when comparing submerged and air-liquid interface exposures. Both exposure methods showed no cellular response below 1 mug/cm(2 )ZnO, which indicates that ZnO nanoparticles are not toxic at occupationally allowed exposure levels. CONCLUSION: The ALICE is a useful tool for dose-controlled nanoparticle (or solute) exposure of cells at the air-liquid interface. Significant differences between cellular response after ZnO nanoparticle exposure under submerged and air-liquid interface conditions suggest that pharmaceutical and toxicological studies with inhaled (nano-)particles should be performed under the more realistic air-liquid interface, rather than submerged cell conditions.
Resumo:
BACKGROUND: The role of adjuvant dose-intensive chemotherapy and its efficacy according to baseline features has not yet been established. PATIENTS AND METHODS: Three hundred and forty-four patients were randomized to receive seven courses of standard-dose chemotherapy (SD-CT) or three cycles of dose-intensive epirubicin and cyclophosphamide (epirubicin 200 mg/m(2) plus cyclophosphamide 4 mg/m(2) with filgrastim and progenitor cell support). All patients were assigned tamoxifen at the completion of chemotherapy. The primary end point was disease-free survival (DFS). This paper updates the results and explores patterns of recurrence according to predicting baseline features. RESULTS: At 8.3-years median follow-up, patients assigned DI-EC had a significantly better DFS compared with those assigned SD-CT [8-year DFS percent 47% and 37%, respectively, hazard ratio (HR) 0.76; 95% confidence interval 0.58-1.00; P = 0.05]. Only patients with estrogen receptor (ER)-positive disease benefited from the DI-EC (HR 0.61; 95% confidence interval 0.39, 0.95; P = 0.03). CONCLUSIONS: After prolonged follow-up, DI-EC significantly improved DFS, but the effect was observed only in patients with ER-positive disease, leading to the hypothesis that efficacy of DI-EC may relate to its endocrine effects. Further studies designed to confirm the importance of endocrine responsiveness in patients treated with dose-intensive chemotherapy are encouraged.
Resumo:
BACKGROUND: A complete remission is essential for prolonging survival in patients with acute myeloid leukemia (AML). Daunorubicin is a cornerstone of the induction regimen, but the optimal dose is unknown. In older patients, it is usual to give daunorubicin at a dose of 45 to 50 mg per square meter of body-surface area. METHODS: Patients in whom AML or high-risk refractory anemia had been newly diagnosed and who were 60 to 83 years of age (median, 67) were randomly assigned to receive cytarabine, at a dose of 200 mg per square meter by continuous infusion for 7 days, plus daunorubicin for 3 days, either at the conventional dose of 45 mg per square meter (411 patients) or at an escalated dose of 90 mg per square meter (402 patients); this treatment was followed by a second cycle of cytarabine at a dose of 1000 mg per square meter every 12 hours [DOSAGE ERROR CORRECTED] for 6 days. The primary end point was event-free survival. RESULTS: The complete remission rates were 64% in the group that received the escalated dose of daunorubicin and 54% in the group that received the conventional dose (P=0.002); the rates of remission after the first cycle of induction treatment were 52% and 35%, respectively (P<0.001). There was no significant difference between the two groups in the incidence of hematologic toxic effects, 30-day mortality (11% and 12% in the two groups, respectively), or the incidence of moderate, severe, or life-threatening adverse events (P=0.08). Survival end points in the two groups did not differ significantly overall, but patients in the escalated-treatment group who were 60 to 65 years of age, as compared with the patients in the same age group who received the conventional dose, had higher rates of complete remission (73% vs. 51%), event-free survival (29% vs. 14%), and overall survival (38% vs. 23%). CONCLUSIONS: In patients with AML who are older than 60 years of age, escalation of the dose of daunorubicin to twice the conventional dose, with the entire dose administered in the first induction cycle, effects a more rapid response and a higher response rate than does the conventional dose, without additional toxic effects. (Current Controlled Trials number, ISRCTN77039377; and Netherlands National Trial Register number, NTR212.)
Resumo:
BACKGROUND AND PURPOSE: In order to use a single implant with one treatment plan in fractionated high-dose-rate brachytherapy (HDR-B), applicator position shifts must be corrected prior to each fraction. The authors investigated the use of gold markers for X-ray-based setup and position control between the single fractions. PATIENTS AND METHODS: Caudad-cephalad movement of the applicators prior to each HDR-B fraction was determined on radiographs using two to three gold markers, which had been inserted into the prostate as intraprostatic reference, and one to two radiopaque-labeled reference applicators. 35 prostate cancer patients, treated by HDR-B as a monotherapy between 10/2003 and 06/2006 with four fractions of 9.5 Gy each, were analyzed. Toxicity was scored according to the CTCAE Score, version 3.0. Median follow-up was 3 years. RESULTS: The mean change of applicators positions compared to baseline varied substantially between HDR-B fractions, being 1.4 mm before fraction 1 (range, -4 to 2 mm), -13.1 mm before fraction 2 (range, -36 to 0 mm), -4.1 mm before fraction 3 (range, -21 to 9 mm), and -2.6 mm at fraction 4 (range, -16 to 9 mm). The original position of the applicators could be readjusted easily prior to each fraction in every patient. In 18 patients (51%), the applicators were at least once readjusted > 10 mm, however, acute or late grade > or = 2 genitourinary toxicity was not increased (p = 1.0) in these patients. CONCLUSION: Caudad position shifts up to 36 mm were observed. Gold markers represent a valuable tool to ensure setup accuracy and precise dose delivery in fractionated HDR-B monotherapy of prostate cancer.
Resumo:
INTRODUCTION: To report acute and late toxicities in patients with intermediate- and high-risk prostate cancer treated with combined high-dose-rate brachytherapy (HDR-B) and intensity-modulated radiation therapy (IMRT). MATERIALS AND METHODS: From March 2003 to September 2005, 64 men were treated with a single implant HDR-B with 21 Gy given in three fractions, followed by 50 Gy IMRT along with organ tracking. Median age was 66.1 years, and risk of recurrence was intermediate in 47% of the patients or high in 53% of the patients. Androgen deprivation therapy was received by 69% of the patients. Toxicity was scored according to the CTCAE version 3.0. Median follow-up was 3.1 years. RESULTS: Acute grade 3 genitourinary (GU) toxicity was observed in 7.8% of the patients, and late grades 3 and 4 GU toxicity was observed in 10.9% and 1.6% of the patients. Acute grade 3 gastrointestinal (GI) toxicity was experienced by 1.6% of the patients, and late grade 3 GI toxicity was absent. The urethral V(120) (urethral volume receiving > or =120% of the prescribed HDR-B dose) was associated with acute (P=.047) and late > or = grade 2 GU toxicities (P=.049). CONCLUSIONS: Late grades 3 and 4GU toxicity occurred in 10.9% and 1.6% of the patients after HDR-B followed by IMRT in association with the irradiated urethral volume. The impact of V(120) on GU toxicity should be validated in further studies.
Resumo:
PURPOSE: To determine the acute and late genitourinary (GU) and gastrointestinal (GI) toxicity and present short-term biochemical no evidence of disease (bNED) rates after high-dose-rate brachytherapy (HDR-B) monotherapy. METHODS AND MATERIALS: Between October 2003 and June 2006, 36 patients with low (28) and intermediate (8) risk prostate cancer (PCA) were treated by HDR-B monotherapy. All patients received one implant and four fractions of 9.5Gy within 48h for a total prescribed dose (PD) of 38Gy. Five patients received hormonal therapy (HT). Median age was 63.5 years and median followup was 3 years (range, 0.4-4 years). Toxicity was scored according to the CTCAE version 3.0. Biochemical failure was defined according to the Phoenix criteria. RESULTS: Acute and late Grade 3 GU toxicity was observed in 1 (3%) and 4 (11%) patients, respectively. Grade 3 GI toxicity was absent. The three- year bNED survival rate was 100%. The sexual preservation rate in patients without HT was 75%. Late Grade 3 GU toxicity was associated with the planning target volume (PTV) V(100) (% PTV receiving > or =100% of the PD; p=0.036), D(90) (dose delivered to 90% of the PTV; p=0.02), and the urethral V(120) (urethral volume receiving > or =120% of the PD; p=0.043). The urethral V(120) was associated with increased PTV V(100) (p<0.001) and D(90) (p=0.003). CONCLUSIONS: After HDR-B monotherapy, late Grade 3 GU toxicity is associated with the urethral V(120) and the V(100) and D(90) of the PTV. Decrease of the irradiated urethral volume may reduce the GU toxicity and potentially improve the therapeutic ratio of this treatment.
Resumo:
OBJECTIVE: In this experimental study we assessed the diagnostic performance of digital linear slit scanning radiography compared with computed radiography (CR) for the detection of urinary calculi in an anthropomorphic phantom imitating patients weighing approximately 58-88 kg. CONCLUSION: Compared with CR, linear slit scanning radiography is superior for the detection of urinary stones and may be used for pretreatment localization and follow-up at a lower patient exposure.