944 resultados para Domain Specific Architecture


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transgenic mice carrying a bovine alpha-lactalbumin (alpha-lac) specific ribozyme gene under the transcriptional control of the mouse mammary tumor virus long terminal repeat were generated and cross-bred with animals that highly express a bovine alpha-lac transgene (0.4 mg of alpha-lac/ml(-1) of milk). The ribozyme contains the hammerhead catalytic domain, flanked by 12-nt sequences complementary to the 3' untranslated region of bovine alpha-lac transcript. High-level expression of the ribozyme gene was detected by Northern blot analysis in the mammary gland of 7-8 day lactating transgenic mice, from 3 of 12 lines analyzed. Heterozygous expression of the ribozyme resulted in a reduction in the levels of the target mRNA to 78, 58, and 50% of that observed in the nonribozyme transgenic littermate controls for three independent lines. The ribozyme-mediated reduction in the levels of the bovine protein paralleled that observed for the mRNA, and was positively correlated with the level of expression of the ribozyme. In nonribozyme expressing transgenic mice, the level of bovine alpha-lac mRNA and protein was not affected. The specificity of this activity is demonstrated by the absence of a reduction in the levels of the endogenous murine alpha-lac mRNA or protein. These results demonstrate the feasibility of ribozyme-mediated down-regulation of highly-expressed transcripts in transgenic animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rhodopsin mutants P23H and G188R, identified in autosomal dominant retinitis pigmentosa (ADRP), and the site-specific mutants D190A and DeltaY191-Y192 were expressed in COS cells from synthetic mutant opsin genes containing these mutations. The proteins expressed from P23H and D190A partially regenerated the rhodopsin chromophore with 11-cis-retinal and were mixtures of the correctly folded (retinal-binding) and misfolded (non-retinal-binding) opsins. The mixtures were separated into pure, correctly folded mutant rhodopsins and misfolded opsins. The proteins expressed from the ADRP mutant G188R and the mutant DeltaY191-Y192 were composed of totally misfolded non-retinal-binding opsins. Far-UV CD spectra showed that the correctly folded mutant rhodopsins had helical content similar to that of the wild-type rhodopsin, whereas the misfolded opsins had helical content 50-70% of the wild type. The near-UV CD spectra of the misfolded mutant proteins lack the characteristic band pattern seen in the wild-type opsin, indicative of a different tertiary structure. Further, whereas the folded mutant rhodopsins were essentially resistant to trypsin digestion, the misfolded opsins were degraded to small fragments under the same conditions. Therefore, the misfolded opsins appear to be less compact in their structures than the correctly folded forms. We suggest that most, if not all, of the point mutations in the intradiscal domain identified in ADRP cause partial or complete misfolding of rhodopsin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescence spectroscopy and isothermal titration calorimetry were used to study the thermodynamics of binding of the glucocorticoid receptor DNA-binding domain to four different, but similar, DNA-binding sites. The binding sites are two naturally occurring sites that differ in the composition of one base pair, i.e., an A-T to G-C mutation, and two sites containing chemical intermediates of these base pairs. The calorimetrically determined heat capacity change (Delta C(p)o(obs)) for glucocorticoid receptor DNA-binding domain binding agrees with that calculated for dehydration of solvent-accessible surface areas. A dominating effect of dehydration or solvent reorganization on the thermodynamics is also consistent with an observed linear relationship between observed enthalpy change (Delta Ho(obs)) and observed entropy change (Delta So(obs)) with a slope close to the experimental temperature. Comparisons with structural data allow us to rationalize individual differences between Delta Ho(obs) (and Delta So(obs)) for the four complexes. For instance, we find that the removal of a methyl group at the DNA-protein interface is enthalpically favorable but entropically unfavorable, which is consistent with a replacement by an ordered water molecule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three members of the Brn-3 family of POU domain transcription factors are found in highly restricted sets of central nervous system neurons. Within the retina, these factors are present only within subsets of ganglion cells. We show here that in the developing mouse retina, Brn-3b protein is first observed in presumptive ganglion cell precursors as they begin to migrate from the zone of dividing neuroblasts to the future ganglion cell layer, and that targeted disruption of the Brn-3b gene leads in the homozygous state to a selective loss of 70% of retinal ganglion cells. In Brn-3b (-/-) mice other neurons within the retina and brain are minimally or not at all affected. These experiments indicate that Brn-3b plays an essential role in the development of specific ganglion cell types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Binding of transcriptional activators to a promoter is a prerequisite process in transcriptional activation. It is well established that the efficiency of activator binding to a promoter is determined by the affinity of direct interactions between the DNA-binding domain of an activator and its specific target sequences. However, I describe here that activator binding to a promoter is augmented in vivo by the effects of two other determinants that have not been generally appreciated: (i) the number of activator binding sites present in a promoter and (ii) the potency of activation domains of activators. Multiple sites within a promoter can cooperatively recruit cognate factors regardless of whether they contain an effective activation domain. This cooperativity can result in the synergistic activation of transcription. The second effect is the enhancement of activator binding to a promoter by the presence of activation domains. In this case, activation domains are not simply tethered to the promoter by the DNA-binding domain but instead assist the DNA-binding domain being tethered onto the promoter. This effect of activation domains on DNA binding is instrumental in determining how potent activators can induce steep transcriptional increases at low concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Promyelocytic leukemia zinc finger-retinoic acid receptor a (PLZF-RARalpha), a fusion receptor generated as a result of a variant t(11;17) chromosomal translocation that occurs in a small subset of acute promyelocytic leukemia (APL) patients, has been shown to display a dominant-negative effect against the wild-type RARalpha/retinoid X receptor alpha (RXRalpha). We now show that its N-terminal region (called the POZ-domain), which mediates protein-protein interaction as well as specific nuclear localization of the wild-type PLZF and chimeric PLZF-RARalpha proteins, is primarily responsible for this activity. To further investigate the mechanisms of PLZF-RARalpha action, we have also studied its ligand-receptor, protein-protein, and protein-DNA interaction properties and compared them with those of the promyelocytic leukemia gene (PML)-RARalpha, which is expressed in the majority of APLs as a result of t(15;17) translocation. PLZF-RARalpha and PML-RARalpha have essentially the same ligand-binding affinities and can bind in vitro to retinoic acid response elements (RAREs) as homodimers or heterodimers with RXRalpha. PLZF-RARalpha homodimerization and heterodimerization with RXRalpha were primarily mediated by the POZ-domain and RARalpha sequence, respectively. Despite having identical RARalpha sequences, PLZF-RARalpha and PML-RARalpha homodimers recognized with different affinities distinct RAREs. Furthermore, PLZF-RARalpha could heterodimerize in vitro with the wild-type PLZF, suggesting that it may play a role in leukemogenesis by antagonizing actions of not only the retinoid receptors but also the wild-type PLZF and possibly other POZ-domain-containing regulators. These different protein-protein interactions and the target gene specificities of PLZF-RARalpha and PML-RARalpha may underlie, at least in part, the apparent resistance of APL with t(11;17) to differentiation effects of all-trans-retinoic acid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tyrosine kinases Flt4, Flt1, and Flk1 (or KDR) constitute a family of endothelial cell-specific receptors with seven immunoglobulin-like domains and a split kinase domain. Flt1 and Flk1 have been shown to play key roles in vascular development; these two receptors bind and are activated by vascular endothelial growth factor (VEGF). No ligand has been identified for Flt4, whose expression becomes restricted during development to the lymphatic endothelium. We have identified cDNA clones from a human glioma cell line that encode a secreted protein with 32% amino acid identity to VEGF. This protein, designated VEGF-related protein (VRP), specifically binds to the extracellular domain of Flt4, stimulates the tyrosine phosphorylation of Flt4 expressed in mammalian cells, and promotes the mitogenesis of human lung endothelial cells. VRP fails to bind appreciably to the extracellular domain of Flt1 or Flk1. The protein contains a C-terminal, cysteine-rich region of about 180 amino acids that is not found in VEGF. A 2.4-kb VRP mRNA is found in several human tissues including adult heart, placenta, ovary, and small intestine and in fetal lung and kidney.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The E2F1 transcription factor has a well-characterized activation domain at its C terminus and the E1A protein has a recently defined activation domain at its N terminus. Here we show that these activation domains are highly related in sequence. The sequence homology reflects, at least partly, the conservation of common binding sites for the RB and CBP/p300 proteins, which are preserved in the same relative order along E2F1 and E1A. Furthermore, the interaction of RB and CBP with these two activation domains results in the same functional consequences: RB represses both activation domains, whereas CBP stimulates them. We conclude that the activation domains of E1A(12s) and E2F1 belong to a novel functional class, characterized by specific protein binding sites. The implication of this conservation with respect to E1A-induced stimulation of E2F activity is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A long-term goal in the field of restriction-modification enzymes has been to generate restriction endonucleases with novel sequence specificities by mutating or engineering existing enzymes. This will avoid the increasingly arduous task of extensive screening of bacteria and other microorganisms for new enzymes. Here, we report the deliberate creation of novel site-specific endonucleases by linking two different zinc finger proteins to the cleavage domain of Fok I endonuclease. Both fusion proteins are active and under optimal conditions cleave DNA in a sequence-specific manner. Thus, the modular structure of Fok I endonuclease and the zinc finger motifs makes it possible to create "artificial" nucleases that will cut DNA near a predetermined site. This opens the way to generate many new enzymes with tailor-made sequence specificities desirable for various applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To probe the protein environment of an ion channel, we have perturbed the structure of a transmembrane domain by substituting side chains with those of two different sizes by using site-specific mutagenesis. We have used Trp and Ala as a high- and a low-impact perturbation probe, respectively, to replace each of 18 consecutive residues within the putative second transmembrane segment, M2, of an inwardly rectifying potassium channel, ROMK1. Our rationale is that a change in the channel function as a consequence of these mutations at a particular position will reflect the structural environment of the altered side chain. Each position can then be assigned to one of three classes of environments, as grated by different levels of perturbation: very tolerant (channel functions with both Trp and Ala substitutions), tolerant (function preserved with Ala but not with Trp substitution), and intolerant (either Ala or Trp substitution destroys function). We identify the very tolerant environment as being lipid-facing, tolerant as protein-interior-facing, and intolerant as pore-facing. We observe a strikingly ordered pattern of perturbation of all three environmental classes. This result indicates that M2 is a straight alpha-helix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two dodecapeptides belonging to distinct classes of Src homology 3 (SH3) ligands and selected from biased phage display libraries were used to investigate interactions between a specificity pocket in the Src SH3 domain and ligant residues flanking the proline-rich core. The solution structures of c-Src SH3 complexed with these peptides were solved by NMR. In addition to proline-rich, polyproline type II helix-forming core, the class I and II ligands each possesses a flanking sequence that occupies a large pocket between the RT and n-Src loops of the SH3 domain. Structural and mutational analyses illustrate how the two classes of SH3 ligands exploit a specificity pocket on the receptor differently to increase binding affinity and specificity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the yeast two-hybrid system we have identified a human protein, GAIP (G Alpha Interacting Protein), that specifically interacts with the heterotrimeric GTP-binding protein G alpha i3. Interaction was verified by specific binding of in vitro-translated G alpha i3 with a GAIP-glutathione S-transferase fusion protein. GAIP is a small protein (217 amino acids, 24 kDa) that contains two potential phosphorylation sites for protein kinase C and seven for casein kinase 2. GAIP shows high homology to two previously identified human proteins, GOS8 and 1R20, two Caenorhabditis elegans proteins, CO5B5.7 and C29H12.3, and the FLBA gene product in Aspergillus nidulans--all of unknown function. Significant homology was also found to the SST2 gene product in Saccharomyces cerevisiae that is known to interact with a yeast G alpha subunit (Gpa1). A highly conserved core domain of 125 amino acids characterizes this family of proteins. Analysis of deletion mutants demonstrated that the core domain is the site of GAIP's interaction with G alpha i3. GAIP is likely to be an early inducible phosphoprotein, as its cDNA contains the TTTTGT sequence characteristic of early response genes in its 3'-untranslated region. By Northern analysis GAIP's 1.6-kb mRNA is most abundant in lung, heart, placenta, and liver and is very low in brain, skeletal muscle, pancreas, and kidney. GAIP appears to interact exclusively with G alpha i3, as it did not interact with G alpha i2 and G alpha q. The fact that GAIP and Sst2 interact with G alpha subunits and share a common domain suggests that other members of the GAIP family also interact with G alpha subunits through the 125-amino-acid core domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most proteins that activate RNA polymerase II-mediated transcription in eukaryotic cells contain sequence-specific DNA-binding domains and "activation" regions. The latter bind general transcription factors and/or coactivators and are required for high-level transcription. Their function in vivo is unknown. Since several activation domains bind the TATA-binding protein (TBP), TBP-associated factors, or other general factors in vitro, one role of the activation domain may be to facilitate promoter occupancy by supporting cooperative binding of the activator and general transcription factors. Using the GAL4 system of yeast, we have tested this model in vivo. It is demonstrated that the presence of a TATA box (the TBP binding site) facilitates binding of GAL4 protein to low- and moderate-affinity sites and that the activation domain modulates these effects. These results support the cooperative binding model for activation domain function in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All cloned members of the mammalian Na+/H+ exchanger gene family encode proteins that consist of two functionally distinct domains: a membrane-bound N terminus and a cytoplasmic C terminus, which are required for ion transport and regulation of transport, respectively. Despite their similarity in structure, three members of this family, designated NHE1, NHE2, and NHE3, exhibit different kinetic mechanisms in response to growth factors and protein kinases. For instance, growth factors stimulate NHE1 by a change in the affinity constant for intracellular H+, K'(Hi+), and regulate NHE2 and NHE3 by a change in Vmax. We have constructed chimeric Na+/H+ exchangers by exchanging the N and C termini among three cloned rabbit Na+/H+ exchangers (NHE1 to NHE3) to determine which domain is responsible for the above Vmax-vs.-K'(H(i)+) effect of the Na+/H+ isoforms. All of the chimeras had functional exchange activity and basal kinetic properties similar to those of wild-type exchangers. Studies with serum showed that the N terminus is responsible for the Vmax-vs.-K'(H(i)+) stimulation of the Na+/H+ exchanger isoforms. Moreover, phorbol 12-myristate 13-acetate and fibroblast growth factor altered Na+/H+ exchange only in chimeras that had an epithelial N-terminal domain matched with an epithelial C-terminal domain. Therefore, the protein kinase-induced regulation of Na+/H+ exchangers is mediated through a specific interaction between the N- and C-termini, whcih is restricted so that epithelial N- and epithelial N-and C-terminal portions of the exchangers are required for regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

p53 accumulates after DNA damage and arrests cellular growth. These findings suggest a possible role for p53 in the cellular response to DNA damage. We have previously shown that the C terminus of p53 binds DNA nonspecifically and assembles stable tetramers. In this study, we have utilized purified segments of human and murine p53s to determine which p53 domains may participate in a DNA damage response pathway. We find that the C-terminal 75 amino acids of human or murine p53 are necessary and sufficient for the DNA annealing and strand-transfer activities of p53. In addition, both full-length wild-type p53 and the C-terminal 75 amino acids display an increased binding affinity for DNA damaged by restriction digestion, DNase I treatment, or ionizing radiation. In contrast, the central site-specific DNA-binding domain together with the tetramerization domain does not have these activities. We propose that interactions of the C terminus of p53 with damaged DNA may play a role in the activation of p53 in response to DNA damage.