924 resultados para Distributed process model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the European Union, the importance of mobile communications was realized early on. The process of mobile communications becoming ubiquitous has taken time, as the innovation of mobile communications diffused into the society. The aim of this study is to find out how the evolution and spatial patterns of the diffusion of mobile communications within the European Union could be taken into account in forecasting the diffusion process. There is relatively lot of research of innovation diffusion on the individual (micro) andthe country (macro) level, if compared to the territorial level. Territorial orspatial diffusion refers either to the intra-country or inter-country diffusionof an innovation. In both settings, the dif- fusion of a technological innovation has gained scarce attention. This study adds knowledge of the diffusion between countries, focusing especially on the role of location in this process. The main findings of the study are the following: The penetration rates of the European Union member countries have become more even in the period of observation, from the year 1981 to 2000. The common digital GSM system seems to have hastened this process. As to the role of location in the diffusion process, neighboring countries have had similar diffusion processes. They can be grouped into three, the Nordic countries, the central and southern European countries, and the remote southern European countries. The neighborhood effect is also domi- nating in thegravity model which is used for modeling the adoption timing of the countries. The subsequent diffusion within a country, measured by the logistic model in Finland, is af- fected positively by its economic situation, and it seems to level off at some 92 %. Considering the launch of future mobile communications systemsusing a common standard should implicate an equal development between the countries. The launching time should be carefully selected as the diffusion is probably delayed in economic downturns. The location of a country, measured by distance, can be used in forecasting the adoption and diffusion. Fi- nally, the result of penetration rates becoming more even implies that in a relatively homoge- nous set of countries, such as the European Union member countries, the estimated final pene- tration of a single country can be used for approximating the penetration of the others. The estimated eventual penetration of Finland, some 92 %, should thus also be the eventual level for all the European Union countries and for the European Union as a whole.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order that the radius and thus ununiform structure of the teeth and otherelectrical and magnetic parts of the machine may be taken into consideration the calculation of an axial flux permanent magnet machine is, conventionally, doneby means of 3D FEM-methods. This calculation procedure, however, requires a lotof time and computer recourses. This study proves that also analytical methods can be applied to perform the calculation successfully. The procedure of the analytical calculation can be summarized into following steps: first the magnet is divided into slices, which makes the calculation for each section individually, and then the parts are submitted to calculation of the final results. It is obvious that using this method can save a lot of designing and calculating time. Thecalculation program is designed to model the magnetic and electrical circuits of surface mounted axial flux permanent magnet synchronous machines in such a way, that it takes into account possible magnetic saturation of the iron parts. Theresult of the calculation is the torque of the motor including the vibrations. The motor geometry and the materials and either the torque or pole angle are defined and the motor can be fed with an arbitrary shape and amplitude of three-phase currents. There are no limits for the size and number of the pole pairs nor for many other factors. The calculation steps and the number of different sections of the magnet are selectable, but the calculation time is strongly depending on this. The results are compared to the measurements of real prototypes. The permanent magnet creates part of the flux in the magnetic circuit. The form and amplitude of the flux density in the air-gap depends on the geometry and material of the magnetic circuit, on the length of the air-gap and remanence flux density of the magnet. Slotting is taken into account by using the Carter factor in the slot opening area. The calculation is simple and fast if the shape of the magnetis a square and has no skew in relation to the stator slots. With a more complicated magnet shape the calculation has to be done in several sections. It is clear that according to the increasing number of sections also the result will become more accurate. In a radial flux motor all sections of the magnets create force with a same radius. In the case of an axial flux motor, each radial section creates force with a different radius and the torque is the sum of these. The magnetic circuit of the motor, consisting of the stator iron, rotor iron, air-gap, magnet and the slot, is modelled with a reluctance net, which considers the saturation of the iron. This means, that several iterations, in which the permeability is updated, has to be done in order to get final results. The motor torque is calculated using the instantaneous linkage flux and stator currents. Flux linkage is called the part of the flux that is created by the permanent magnets and the stator currents passing through the coils in stator teeth. The angle between this flux and the phase currents define the torque created by the magnetic circuit. Due to the winding structure of the stator and in order to limit the leakage flux the slot openings of the stator are normally not made of ferromagnetic material even though, in some cases, semimagnetic slot wedges are used. In the slot opening faces the flux enters the iron almost normally (tangentially with respect to the rotor flux) creating tangential forces in the rotor. This phenomenon iscalled cogging. The flux in the slot opening area on the different sides of theopening and in the different slot openings is not equal and so these forces do not compensate each other. In the calculation it is assumed that the flux entering the left side of the opening is the component left from the geometrical centre of the slot. This torque component together with the torque component calculated using the Lorenz force make the total torque of the motor. It is easy to assume that when all the magnet edges, where the derivative component of the magnet flux density is at its highest, enter the slot openings at the same time, this will have as a result a considerable cogging torque. To reduce the cogging torquethe magnet edges can be shaped so that they are not parallel to the stator slots, which is the common way to solve the problem. In doing so, the edge may be spread along the whole slot pitch and thus also the high derivative component willbe spread to occur equally along the rotation. Besides forming the magnets theymay also be placed somewhat asymmetric on the rotor surface. The asymmetric distribution can be made in many different ways. All the magnets may have a different deflection of the symmetrical centre point or they can be for example shiftedin pairs. There are some factors that limit the deflection. The first is that the magnets cannot overlap. The magnet shape and the relative width compared to the pole define the deflection in this case. The other factor is that a shifting of the poles limits the maximum torque of the motor. If the edges of adjacent magnets are very close to each other the leakage flux from one pole to the other increases reducing thus the air-gap magnetization. The asymmetric model needs some assumptions and simplifications in order to limit the size of the model and calculation time. The reluctance net is made for symmetric distribution. If the magnets are distributed asymmetrically the flux in the different pole pairs will not be exactly the same. Therefore, the assumption that the flux flows from the edges of the model to the next pole pairs, in the calculation model from one edgeto the other, is not correct. If it were wished for that this fact should be considered in multi-pole pair machines, this would mean that all the poles, in other words the whole machine, should be modelled in reluctance net. The error resulting from this wrong assumption is, nevertheless, irrelevant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Technological development brings more and more complex systems to the consumer markets. The time required for bringing a new product to market is crucial for the competitive edge of a company. Simulation is used as a tool to model these products and their operation before actual live systems are built. The complexity of these systems can easily require large amounts of memory and computing power. Distributed simulation can be used to meet these demands. Distributed simulation has its problems. Diworse, a distributed simulation environment, was used in this study to analyze the different factors that affect the time required for the simulation of a system. Examples of these factors are the simulation algorithm, communication protocols, partitioning of the problem, distributionof the problem, capabilities of the computing and communications equipment and the external load. Offices offer vast amounts of unused capabilities in the formof idle workstations. The use of this computing power for distributed simulation requires the simulation to adapt to a changing load situation. This requires all or part of the simulation work to be removed from a workstation when the owner wishes to use the workstation again. If load balancing is not performed, the simulation suffers from the workstation's reduced performance, which also hampers the owner's work. Operation of load balancing in Diworse is studied and it is shown to perform better than no load balancing, as well as which different approaches for load balancing are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Model organisms are used for research because they provide a framework on which to develop and optimize methods that facilitate and standardize analysis. Such organisms should be representative of the living beings for which they are to serve as proxy. However, in practice, a model organism is often selected ad hoc, and without considering its representativeness, because a systematic and rational method to include this consideration in the selection process is still lacking. Methodology/Principal Findings: In this work we propose such a method and apply it in a pilot study of strengths and limitations of Saccharomyces cerevisiae as a model organism. The method relies on the functional classification of proteins into different biological pathways and processes and on full proteome comparisons between the putative model organism and other organisms for which we would like to extrapolate results. Here we compare S. cerevisiae to 704 other organisms from various phyla. For each organism, our results identify the pathways and processes for which S. cerevisiae is predicted to be a good model to extrapolate from. We find that animals in general and Homo sapiens in particular are some of the non-fungal organisms for which S. cerevisiae is likely to be a good model in which to study a significant fraction of common biological processes. We validate our approach by correctly predicting which organisms are phenotypically more distant from S. cerevisiae with respect to several different biological processes. Conclusions/Significance: The method we propose could be used to choose appropriate substitute model organisms for the study of biological processes in other species that are harder to study. For example, one could identify appropriate models to study either pathologies in humans or specific biological processes in species with a long development time, such as plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flow structures above vegetation canopies have received much attention within terrestrial and aquatic literature. This research has led to a good process understanding of mean and turbulent canopy flow structure. However, much of this research has focused on rigid or semi-rigid vegetation with relatively simple morphology. Aquatic macrophytes differ from this form, exhibiting more complex morphologies, predominantly horizontal posture in the flow and a different force balance. While some recent studies have investigated such canopies, there is still the need to examine the relevance and applicability of general canopy layer theory to these types of vegetation. Here, we report on a range of numerical experiments, using both semi-rigid and highly flexible canopies. The results for the semi-rigid canopies support existing canopy layer theory. However, for the highly flexible vegetation, the flow pattern is much more complex and suggests that a new canopy model may be required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been convincingly argued that computer simulation modeling differs from traditional science. If we understand simulation modeling as a new way of doing science, the manner in which scientists learn about the world through models must also be considered differently. This article examines how researchers learn about environmental processes through computer simulation modeling. Suggesting a conceptual framework anchored in a performative philosophical approach, we examine two modeling projects undertaken by research teams in England, both aiming to inform flood risk management. One of the modeling teams operated in the research wing of a consultancy firm, the other were university scientists taking part in an interdisciplinary project experimenting with public engagement. We found that in the first context the use of standardized software was critical to the process of improvisation, the obstacles emerging in the process concerned data and were resolved through exploiting affordances for generating, organizing, and combining scientific information in new ways. In the second context, an environmental competency group, obstacles were related to the computer program and affordances emerged in the combination of experience-based knowledge with the scientists' skill enabling a reconfiguration of the mathematical structure of the model, allowing the group to learn about local flooding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper is motivated by the valuation problem of guaranteed minimum death benefits in various equity-linked products. At the time of death, a benefit payment is due. It may depend not only on the price of a stock or stock fund at that time, but also on prior prices. The problem is to calculate the expected discounted value of the benefit payment. Because the distribution of the time of death can be approximated by a combination of exponential distributions, it suffices to solve the problem for an exponentially distributed time of death. The stock price process is assumed to be the exponential of a Brownian motion plus an independent compound Poisson process whose upward and downward jumps are modeled by combinations (or mixtures) of exponential distributions. Results for exponential stopping of a Lévy process are used to derive a series of closed-form formulas for call, put, lookback, and barrier options, dynamic fund protection, and dynamic withdrawal benefit with guarantee. We also discuss how barrier options can be used to model lapses and surrenders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a computer simulation study of the ion binding process at an ionizable surface using a semi-grand canonical Monte Carlo method that models the surface as a discrete distribution of charged and neutral functional groups in equilibrium with explicit ions modelled in the context of the primitive model. The parameters of the simulation model were tuned and checked by comparison with experimental titrations of carboxylated latex particles in the presence of different ionic strengths of monovalent ions. The titration of these particles was analysed by calculating the degree of dissociation of the latex functional groups vs. pH curves at different background salt concentrations. As the charge of the titrated surface changes during the simulation, a procedure to keep the electroneutrality of the system is required. Here, two approaches are used with the choice depending on the ion selected to maintain electroneutrality: counterion or coion procedures. We compare and discuss the difference between the procedures. The simulations also provided a microscopic description of the electrostatic double layer (EDL) structure as a function of pH and ionic strength. The results allow us to quantify the effect of the size of the background salt ions and of the surface functional groups on the degree of dissociation. The non-homogeneous structure of the EDL was revealed by plotting the counterion density profiles around charged and neutral surface functional groups. © 2011 American Institute of Physics.