917 resultados para Digital design
Resumo:
A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available.
Resumo:
This paper describes a methodological proposal for the design, creation and evaluation of Learning Objects (LOs). This study arises from the compilation and analysis of several LO design methodologies currently used in Ibero-America. This proposal, which has been named DICREVOA, defines five different phases: analysis, design (instructional and multimedia), implementation (LO and metadata), evaluation (from the perspective of both the producer and the consumer of the LO), and publishing. The methodology focuses not only on the teaching inexperienced, but also on those having a basic understanding of the technological and educational aspects related to LO design; therefore, the study emphasizes LO design activities centered around the Kolb cycle and the use of the ExeLearning tool in order to implement the LO core. Additionally, DICREVOA was used in a case study, which demonstrates how it provides a feasible mechanism for LO design and implementation within different contexts. Finally, DICREVOA, the case study to which it was applied, and the results obtained are presented