989 resultados para Differential-mode


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electric fields inside guided-mode resonance filters (GMRFs) may be intensified by resonance effects. The electric field enhancement is investigated in two GMRFs: one is resonant at normal incidence, the other at oblique incidence. It is shown that the two GMRFs exhibit different behaviors in their electric enhancement. Differences between the electric field distributions of the two GMRFs arise because coupling between counter-propagating modes occurs in the first case. It is also shown that the order of the electric field of maximum amplitude can be controlled by modulation of the dielectric constant of the grating. (c) 2006 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: 5'-deoxy-5'-methylthioadenosine (MTA) is an endogenous compound produced through the metabolism of polyamines. The therapeutic potential of MTA has been assayed mainly in liver diseases and, more recently, in animal models of multiple sclerosis. The aim of this study was to determine the neuroprotective effect of this molecule in vitro and to assess whether MTA can cross the blood brain barrier (BBB) in order to also analyze its potential neuroprotective efficacy in vivo. Methods: Neuroprotection was assessed in vitro using models of excitotoxicity in primary neurons, mixed astrocyte-neuron and primary oligodendrocyte cultures. The capacity of MTA to cross the BBB was measured in an artificial membrane assay and using an in vitro cell model. Finally, in vivo tests were performed in models of hypoxic brain damage, Parkinson's disease and epilepsy. Results: MTA displays a wide array of neuroprotective activities against different insults in vitro. While the data from the two complementary approaches adopted indicate that MTA is likely to cross the BBB, the in vivo data showed that MTA may provide therapeutic benefits in specific circumstances. Whereas MTA reduced the neuronal cell death in pilocarpine-induced status epilepticus and the size of the lesion in global but not focal ischemic brain damage, it was ineffective in preserving dopaminergic neurons of the substantia nigra in the 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-mice model. However, in this model of Parkinson's disease the combined administration of MTA and an A(2A) adenosine receptor antagonist did produce significant neuroprotection in this brain region. Conclusion: MTA may potentially offer therapeutic neuroprotection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While TRAIL is a promising anticancer agent due to its ability to selectively induce apoptosis in neoplastic cells, many tumors, including pancreatic ductal adenocarcinoma (PDA), display intrinsic resistance, highlighting the need for TRAIL-sensitizing agents. Here we report that TRAIL-induced apoptosis in PDA cell lines is enhanced by pharmacological inhibition of glycogen synthase kinase-3 (GSK-3) or by shRNA-mediated depletion of either GSK-3 alpha or GSK-3 beta. In contrast, depletion of GSK-3 beta, but not GSK-3 alpha, sensitized PDA cell lines to TNF alpha-induced cell death. Further experiments demonstrated that TNF alpha-stimulated I kappa B alpha phosphorylation and degradation as well as p65 nuclear translocation were normal in GSK-3 beta-deficient MEFs. Nonetheless, inhibition of GSK-3 beta function in MEFs or PDA cell lines impaired the expression of the NF-kappa B target genes Bcl-xL and cIAP2, but not I kappa B alpha. Significantly, the expression of Bcl-xL and cIAP2 could be reestablished by expression of GSK-3 beta targeted to the nucleus but not GSK-3 beta targeted to the cytoplasm, suggesting that GSK-3 beta regulates NF-kappa B function within the nucleus. Consistent with this notion, chromatin immunoprecipitation demonstrated that GSK-3 inhibition resulted in either decreased p65 binding to the promoter of BIR3, which encodes cIAP2, or increased p50 binding as well as recruitment of SIRT1 and HDAC3 to the promoter of BCL2L1, which encodes Bcl-xL. Importantly, depletion of Bcl-xL but not cIAP2, mimicked the sensitizing effect of GSK-3 inhibition on TRAIL-induced apoptosis, whereas Bcl-xL overexpression ameliorated the sensitization by GSK-3 inhibition. These results not only suggest that GSK-3 beta overexpression and nuclear localization contribute to TNF alpha and TRAIL resistance via anti-apoptotic NF-kappa B genes such as Bcl-xL, but also provide a rationale for further exploration of GSK-3 inhibitors combined with TRAIL for the treatment of PDA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a new type of guided-mode resonant grating (GMRG) filter with an antireflective surface called the 'moth-eye structure' for the multiple channels is presented by using rigorous coupled-wave analysis (RCWA) and the S-matrix method. Long range, low sidebands and multiple channels are found when the GMRG filters with antireflective surface are illuminated with incident polarization light. It is calculated that the multiple channel phenomenon can be shown when the depth of antireflective surface is increased. Moreover, the wavelengths of the multiple channels can be easily shifted by changing the depth of the homogenous layer which is under the antireflective surface, and the optical properties of GMRG filters such as low sideband reflection and narrow band are not badly spoiled when the depth is changed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that the surface relief guided-mode resonant gratings with specified central wavelength and FWHM in the visible wavelength range can be designed by analyzing the complex poles of Reflectance and transmission coefficient matrix algorithm (RTCM), a variant of S-matrix propagation algorithm proposed for calculation of multilayer gratings. In addition, FWHM is computed with couple-mode (CM) theory of resonant gratings which is firstly extended by Norton et al. in calculation of waveguide grating. Furthermore, the side band reflections of the filter can be reduced to less than 5% in the visible wavelength with the antireflection (AR) design technique widely used in the thin-film field. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unless the fabrication error control is well treated, it easily causes overetched fabrication errors, which causes the resonant peak value deviation during the fabrication process of guided-mode resonant filters (GMRFs). Hence, the fabrication error control becomes a key point for improving the performance of GMRF. We find that, within the range of the groove depth from 93 to 105 nm, the relationship between the overetched error and the resonant peak value deviation is nearly linear, which means that we can compensate the reflectance response deviation and reduce the resonant peak value deviation by the method of covering the layer film on the GMRF. Simulation results show that the deviation is compensated perfectly by this way. (C) 2008 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A normal-incidence nonpolarizing guided-mode resonance filter is designed. There are two waveguide layers and one grating layer in the filter. By adjusting the distance between the two waveguide layers, the same resonance wavelength for both TE and TM polarization can be achieved. An antireflection design method is also used to decrease the sideband reflection of the filter. The results show that the filter has high reflection, more than 99.9% at 500 nm, and the FW-HMs of TE- and TM-polarized light are 2.16 and 0.15 nm, respectively. (C) 2009 Optical Society of America

Relevância:

20.00% 20.00%

Publicador: