969 resultados para Differential equations, Partial -- Numerical solutions -- Computer programs
Resumo:
Even today tables are used in the calculation of structures formed by flat elements, these methods are acceptable only for a limited number of cases, but even so, in some situations, tables are used. With time some methods of differential equations resolutions were emerging and accepted as the most effective solution. Today, with the advancement in technology, there are already some programs able to solve more complex problems in less time using these methods. Aiming to optimize time and better understand the physical behavior of plates, this work presents the theory of plate, the Boundary Element Method (BEM) applied to solve problems of plates (slabs) with various boundary conditions and load through the program Placas2 (TAGUTI, Y.-2010) in Fortran language
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper we introduce a type of Hypercomplex Fourier Series based on Quaternions, and discuss on a Hypercomplex version of the Square of the Error Theorem. Since their discovery by Hamilton (Sinegre [1]), quaternions have provided beautifully insights either on the structure of different areas of Mathematics or in the connections of Mathematics with other fields. For instance: I) Pauli spin matrices used in Physics can be easily explained through quaternions analysis (Lan [2]); II) Fundamental theorem of Algebra (Eilenberg [3]), which asserts that the polynomial analysis in quaternions maps into itself the four dimensional sphere of all real quaternions, with the point infinity added, and the degree of this map is n. Motivated on earlier works by two of us on Power Series (Pendeza et al. [4]), and in a recent paper on Liouville’s Theorem (Borges and Mar˜o [5]), we obtain an Hypercomplex version of the Fourier Series, which hopefully can be used for the treatment of hypergeometric partial differential equations such as the dumped harmonic oscillation.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A multiseries integrable model (MSIM) is defined as a family of compatible flows on an infinite-dimensional Lie group of N-tuples of formal series around N given poles on the Riemann sphere. Broad classes of solutions to a MSIM are characterized through modules over rings of rational functions, called asymptotic modules. Possible ways for constructing asymptotic modules are Riemann-Hilbert and ∂̄ problems. When MSIM's are written in terms of the group coordinates, some of them can be contracted into standard integrable models involving a small number of scalar functions only. Simple contractible MSIM's corresponding to one pole, yield the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy. Two-pole contractible MSIM's are exhibited, which lead to a hierarchy of solvable systems of nonlinear differential equations consisting of (2 + 1) -dimensional evolution equations and of quite strong differential constraints. © 1989 American Institute of Physics.
Resumo:
A semirelativistic two-body Dirac equation with an enlarged set of phenomenological potentials, including Breit-type terms, is investigated for the general case of unequal masses. Solutions corresponding to definite total angular momentum and parity are shown to fall into two classes, each one being obtained by solving a system of four coupled first-order radial differential equations. The reduction of each of these systems to a pair of coupled Schrödinger-type equations is also discussed. © 1992 American Institute of Physics.
Resumo:
The momentum dependence of the ρ0-ω mixing contribution to charge-symmetry breaking (CSB) in the nucleon-nucleon interaction is compared in a variety of models. We focus in particular on the role that the structure of the quark propagator plays in the predicted behaviour of the ρ0-ω mixing amplitude. We present new results for a confining (entire) quark propagator and for typical propagators arising from explicit numerical solutions of quark Dyson-Schwinger equations We compare these to hadronic and free quark calculations The implications for our current understanding of CSB experiments is discussed.
Resumo:
This paper deals with transient stability analysis based on time domain simulation on vector processing. This approach requires the solution of a set of differential equations in conjunction of another set of algebraic equations. The solution of the algebraic equations has presented a scalar as sequential set of tasks, and the solution of these equations, on vector computers, has required much more investigations to speedup the simulations. Therefore, the main objective of this paper has been to present methods to solve the algebraic equations using vector processing. The results, using a GRAY computer, have shown that on-line transient stability assessment is feasible.
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Composites are engineered materials that take advantage of the particular properties of each of its two or more constituents. They are designed to be stronger, lighter and to last longer which can lead to the creation of safer protection gear, more fuel efficient transportation methods and more affordable materials, among other examples. This thesis proposes a numerical and analytical verification of an in-house developed multiscale model for predicting the mechanical behavior of composite materials with various configurations subjected to impact loading. This verification is done by comparing the results obtained with analytical and numerical solutions with the results found when using the model. The model takes into account the heterogeneity of the materials that can only be noticed at smaller length scales, based on the fundamental structural properties of each of the composite’s constituents. This model can potentially reduce or eliminate the need of costly and time consuming experiments that are necessary for material characterization since it relies strictly upon the fundamental structural properties of each of the composite’s constituents. The results from simulations using the multiscale model were compared against results from direct simulations using over-killed meshes, which considered all heterogeneities explicitly in the global scale, indicating that the model is an accurate and fast tool to model composites under impact loads. Advisor: David H. Allen
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The retaking of the ethanol program in the year 2003 as a fuel for light road transportation in Brazil through the introduction of flex fuel vehicles fleet was a good strategy to overcome the difficulties of the ethanol production sector and did work to increase its market share relative to gasoline. This process, however, may cause a future disequilibrium on the food production and on the refining oil derivates structure. In order to analyze the substitution process resultant of the competition between two opponents fighting for the same market, in this case the gasoline/ethanol substitution process, a method derived from the biomathematics based on the non-linear differential equations (NLDE) system is utilized. A brief description of the method is presented. Numerical adherence of the method to explain several substitution phenomena that occurred in the past is presented in the previous author`s paper, in which the urban gas pipeline system substitution of bottled LPG in the dwelling sector and the substitution of the urban diesel transportation fleet by compressed natural gas (CNG) buses is presented. The proposed method is particularly suitable for prospective analysis and scenarios assessment. (c) 2008 Elsevier Ltd. All rights reserved.