930 resultados para Dicumyl Peroxide
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
To evaluate the trans-enamel and trans-dentinal cytotoxic effects of a 35% H2O2 bleaching gel on an odontoblast-like cell lines (MDPC-23) after consecutive applications.Fifteen enamel/dentine discs were obtained from bovine central incisor teeth and placed individually in artificial pulp chambers. Three groups (n = 5 discs) were formed according to the following enamel treatments: G1: 35% H2O2 bleaching gel (15 min); G2: 35% H2O2 bleaching gel (15 min) + halogen light (20 s); G3: control (no treatment). After repeating the treatments three consecutive times, the extracts (culture medium + gel components that had diffused through enamel/dentine discs) in contact with the dentine were collected and applied to previously cultured MDPC-23 cells (50 000 cells cm(-2)) for 24 h. Cell metabolism was evaluated by the MTT assay and data were analysed statistically (alpha = 5%; Kruskal-Wallis and Mann-Whitney U-test). Cell morphology was analysed by scanning electron microscopy.Cell metabolism decreased by 92.03% and 82.47% in G1 and G2 respectively. G1 and G2 differed significantly (P < 0.05) from G3. Regardless of halogen light activation, the application of the bleaching gel on the cultured odontoblast-like cells caused significantly more severe cytotoxic effects than those observed in the nontreated control group. In addition, significant morphological cell alterations were observed in G1 and G2.After three consecutive applications of a 35% H2O2 bleaching agent, the diffusion of the gel components through enamel and dentine caused severe toxic effects to cultured pulp cells.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objectives: To compare the fracture resistance of bovine teeth after intracoronal bleaching with sodium percarbonate (SPC) or sodium perborate (SP) mixed with water or 20% hydrogen peroxide (HP). Materials and methods: Fifty extracted bovine teeth were divided into four experimental groups (G1G4) and one control (n = 10) after endodontic treatment. Following root canal obturation, a glass ionomer barrier was placed at the cementoenamel junction. After that, the pulp chambers were filled with: G1 SP with water; G2 SP with 20% HP; G3 SPC with water; and G4 SPC with 20% HP. No bleaching agent was used in the control group. Coronal access cavities were sealed with glass ionomer and specimens were immersed in artificial saliva. The bleaching agents were replaced after 7 days, and teeth were kept in artificial saliva for an additional 7 days, after which the pastes were removed and the coronal access cavities were restored with glass ionomer. Crowns were subjected to compressive load at a cross head speed of 0.5 mm min-1 applied at 135 degrees to the long axis of the root by an EMIC DL2000 testing machine, until coronal fracture. Data were statistically analysed by anova and Tukey test. Results: No differences in fracture resistance were observed between the experimental groups (P > 0.05). However, all experimental groups presented lower fracture resistance than the control group (P < 0.05). Conclusion: SPC and SP led to equal reduction on fracture resistance of dental crowns, regardless of being mixed with water or 20% HP.
Resumo:
This study evaluated the fracture resistance of teeth submitted to internal bleaching and restored with different non-metallic post. Eighty mandibular incisors were endodontically treated and randomly divided in 10 groups (n = 8): G1- restored with composite resin (CR), G2- CR + fiber-reinforced composite post (FRC, Everstick post, Sticktech) cemented with resin cement self-etch adhesive (RCS, Panavia F 2.0, Kuraray), G3- CR + FRC + self-adhesive resin cement (SRC, Breeze, Pentral Clinical), G4- CR+ glass fiber post (GF, Exacto Post, Angelus) + RCS, G5- CR + GF + SRC. The G6 to G10 were bleached with hydrogen peroxide (HP) and restored with the same restorative procedures used for G1 to G5, respectively. After 7 days storage in artificial saliva, the specimens were submitted to the compressive strength test (N) at 0.5 mm/min cross-head speed and the failure pattern was identified as either reparable (failure showed until 2 mm below the cement-enamel junction) or irreparable (the failure showed <2 mm or more below the cement-enamel). Data were analyzed by ANOVA and Tukey test (α = 0.05). No significant difference (p < 0.05) was found among G1 to G10. The results suggest that intracoronal bleaching did not significantly weaken the teeth and the failure patterns were predominately reparable for all groups. The non-metallic posts in these teeth did not improve fracture resistance.
Resumo:
The purpose of this study was to evaluate the influence of different light sources for in-office bleaching on surface microhardness of human enamel. One hundred and five blocks of third molars were distributed among seven groups. The facial enamel surface of each block was polished and baseline Knoop microhardness of enamel was assessed with a load of 25 g for 5 s. Subsequently, the enamel was treated with 35% hydrogen peroxide bleaching agent and photo-activated with halogen light (group A) during 38 s, LED (group B) during 360 s, and high intensity diode laser (group C) during 4 s. The groups D (38 s), E (360 s), and F (4 s) were treated with the bleaching agent without photo-activated. The control (group G) was only kept in saliva without any treatment. Microhardness was reassessed after 1 day of the bleaching treatment, and after 7 and 21 days storage in artificial saliva. The mean percentage and standard deviation of microhardness in Knoop Hardness Number were: A 97.8 +/- 13.1 KHN; B 95.5 +/- 12.7 KHN; C 84.2 +/- 13.6 KHN; D 128.6 +/- 20.5 KHN; E 133.9 +/- 14.2 KHN; F 123.9 +/- 14.2 KHN; G 129.8 +/- 18.8 KHN. Statistical analysis (p < 0.05; Tukey test) showed that microhardness percentage values were significantly lower in the groups irradiated with light when compared with the non-irradiated groups. Furthermore, the non-irradiated groups showed that saliva was able to enhance the microhardness during the measurement times. The enamel microhardness was decreased when light sources were used during the bleaching process and the artificial saliva was able to increase microhardness when no light was used.
Resumo:
Objective: Our goal was to investigate the surface temperature variations in the cervical region via infrared thermography, as well as the temperature within the pulp chamber via thermocouples, of mandibular incisors when subjected to dental bleaching using two different 35% hydrogen peroxide gels, red (HP) and green (HPM), when activated by halogen light (HL) and LED light.Background Data: Temperatures increases of more than 5.5 degrees C are considered to be potentially threatening to pulp vitality, while those higher than 10 degrees C can result in periodontal injury.Materials and Methods: Tooth samples were randomly divided into four groups (n = 10 each), according to the bleaching agent and catalyst light source used.Results: Mean values and standard deviations of the temperature increases inside the pulp chamber in the HL groups were 4.4 degrees +/- 2.1 degrees C with HP, and 4.5 degrees +/- 1.2 degrees C with HPM; whereas in the groups using LED light, they were 1.4 degrees +/- 0.3 degrees C for HP, and 1.5 degrees +/- 0.2 degrees C for HPM. For the root surfaces, the maximum temperature increases in the groups irradiated with HL were 6.5 degrees +/- 1.5 degrees C for HP, and 7.5 degrees +/- 1.1 degrees C with HPM; whereas in the groups irradiated with LED light, they were 2.8 degrees +/- 0.7 degrees C with HP, and 3 degrees +/- 0.8 degrees C with HPM. There were no statistically significant differences in pulp and surface temperature increases between the groups using different gels, although the mean temperature increases were significantly higher for the groups irradiated with HL when compared with those irradiated with the LED light (p < 0.05 with Tukey's test).Conclusion: LED light may be safe for periodontal and pulp tissue when using this method, but HL should be used with care.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Two L-amino acid oxidases (LAAOs) were identified by random sequencing of cDNA libraries from the venom glands of Bothrops moojeni (BmooLAAO) and Bothrops jararacussu (Bjussu LAAO). Phylogenetic analysis involving other SV-LAAOs showed sequence identities within the range 83-87% being closely related to those from Agkistrodon and Trimeresurus. Molecular modeling experiments indicated the FAD-binding, substrate-binding, and helical domains of Bmoo and Bjussu LAAOs. The RMS deviations obtained by the superposition of those domains and that from Calloselasma rhodostoma LAAO crystal structure confirm the high degree of structural similarity between these enzymes. Purified BjussuLAAO-I and BmooLAAO-I exhibited antiprotozoal activities which were demonstrated to be hydrogen-peroxide mediated. This is the first report on the isolation and identification of cDNAs encoding LAAOs from Bothrops venom. The findings here reported contribute to the overall structural elucidation of SV-LAAOs and will advance the understanding on their mode of action. (c) 2006 Elsevier B.V. All rights reserved.
Bioinformatical and in vitro approaches to essential oil-induced matrix metalloproteinase inhibition
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An Arabidopsis thaliana cDNA clone encoding a plant uncoupling mitochondrial protein (AtPUMP1) was overexpressed in transgenic tobacco plants. Analysis of the AtPUMP1 mRNA content in the transgenic lines, determined by Northern blot, revealed variable levels of transgene expression. Antibody probing of Western blots of mitochondrial proteins from three independent transgenic lines showed significant accumulation of AtPUMP1 in this organelle. Overproduction of AtPUMP1 in transgenic tobacco plants led to a significant increase in tolerance to oxidative stress promoted by exogenous hydrogen peroxide as compared to wild-type control plants. These results provide the first biological evidence for a role of PUMP in protection of plant cells against oxidative stress damage.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Propolis has been used in folk medicine since ancient times due to its, many biological properties: such as antimicrobial. antinflammatory, antioxidant, immunomodulatory activities, among others. 'Macrophages play an important role in the early phase of Salmonella infection. In this work, macrophages were prestimated with Brazilian or Bulgarian propolis and subsequently challenged with Salmonella Typhimurium at different macrophage/bacteria ratio. After 60 min of incubation. cells were harvested with Triton-X to lyse the macrophages. To assess the bactericidal activity. The number of colony-forming units (CFU) of S. typhimurium was determined by plating 0.1 mL in 'Mueller Hinton agar. After 24 h. CFU were counted. and the percentage of bactericidal activity was obtained. Propolis from Brazil and Bulgaria enhanced the bactericidal activity of macrophages, depending on its concentration. Brazilian propolis seemed to be more efficient than that from Bulgaria. because of their different chemical composition. In Bulgaria, bees collect the material mainly from the bud exudate of poplar tree, while in Brazil, Baccharis dracunculifolia DC. was shown to be the main propolis source. Our data also showed that the increased bactericidal activity of macrophages involved the participation of oxygen (H2O2) and nitrogen (NO) intermediate metabolites. (C) 2004 Elsevier B.V. All rights reserved.