984 resultados para Dendritic cell, Glucocorticoid, IL-10, IL-21, Treg
Resumo:
El tema central de esta investigación son las reformas religiosas y políticas llevadas a cabo en el reinado de Ajenatón (1364-1347 a.C.), décimo faraón de la Dinastía XVIII del Imperio Nuevo del Antiguo Egipto.
Resumo:
BACKGROUND: Tyrosine kinase inhibitors (TKI) improve the outcome of patients with advanced gastrointestinal stromal tumour (GIST), but treatment failure is frequent, and prognosis then bleak. Smaller trials in this setting suggested activity for sorafenib, a multikinase inhibitor of receptor tyrosine kinases and RAF serine/threonine kinases. PATIENTS AND METHODS: We retrospectively evaluated the efficacy of sorafenib, starting dose 400mg twice daily, in a large community-based cohort of 124 patients treated in 12 European and one United States (U.S.) cancer centre. All but one patient had a WHO performance score 0-2. All had failed both imatinib and sunitinib, 68 patients nilotinib and 26 had failed investigational therapy, too. RESULTS: Twelve (10%) patients responded to sorafenib and 70 (57%) patients achieved disease stabilisation. Sorafenib was moderately tolerated, and toxicity reported in 56% of the patients. Rash, hand-foot-syndrome and diarrhea occurred frequently. Sorafenib dosage was reduced in a third of patients, but this did not have an impact on progression-free survival (PFS) (p=0.15). Median PFS was 6.4months (95% confidence interval [CI], 4.6-8.0months) and median overall survival (OS) 13.5months (95% CI, 10.0-21.0months). Patients with a good performance status and those who responded to sorafenib had a significant better PFS. CONCLUSION: We conclude that sorafenib is active in GIST resistant to imatinib, sunitinib and nilotinib. These results warrant further investigation of sorafenib or similar molecules in GIST.
Resumo:
Kysymykset: Esko Rahikainen
Resumo:
Kommentti Hannu Virtasen puheenvuoroon (TT-lehdessä 8/2004)
Resumo:
During the past decades, anticancer immunotherapy has evolved from a promising therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are now approved by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, and many others are being investigated as standalone therapeutic interventions or combined with conventional treatments in clinical studies. Immunotherapies may be subdivided into "passive" and "active" based on their ability to engage the host immune system against cancer. Since the anticancer activity of most passive immunotherapeutics (including tumor-targeting monoclonal antibodies) also relies on the host immune system, this classification does not properly reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer immunotherapeutics can be classified according to their antigen specificity. While some immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), others operate in a relatively non-specific manner and boost natural or therapy-elicited anticancer immune responses of unknown and often broad specificity. Here, we propose a critical, integrated classification of anticancer immunotherapies and discuss the clinical relevance of these approaches.