962 resultados para Deficient


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major problem in gene therapy and tissue replacement is accessibility of tissue-specific stem cells. One solution is to isolate tissue-specific stem cells from differentiating embryonic stem (ES) cells. Here, we show that liver progenitor cells can be purified from differentiated ES cells using alpha-fetoprotein (AFP) as a marker. By knocking the green fluorescent protein (GFP) gene into the AFP locus of ES cells and differentiating the modified ES cells in vitro, a subpopulation of GFP(+) and AFP-expressing cells was generated. When transplanted into partially hepatectomized lacZ-positive ROSA26 mice, GFP(+) cells engrafted and differentiated into lacZ-negative and albumin-positive hepatocytes. Differentiation into hepatocytes also occurred after transplantation of GFP(+) cells in apolipoprotein-E- (ApoE) or haptoglobin-deficient mice as demonstrated by the presence of ApoE-positive hepatocytes and ApoE mRNA in the liver of ApoE-deficient mice or by haptoglobin in the serum and haptoglobin mRNA in the liver of haptoglobin-deficient mice. This study describes the first isolation of ES-cell-derived liver progenitor cells that are viable mediators of liver-specific functions in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Expression profiling of BRCA1-deficient tumours has identified a pattern of gene expression similar to basal-like breast tumours. In this study, we examine whether a BRCA1-dependent transcriptional mechanism may underpin the link between BRCA1 and basal-like phenotype. In methods section, the mRNA and protein were harvested from a number of BRCA1 mutant and wild-type breast cancer cell lines and from matched isogenic controls. Microarray-based expression profiling was used to identify potential BRCA1-regulated transcripts. These gene targets were then validated (by in silico analysis of tumour samples) by real-time PCR and Western blot analysis. Chromatin immunoprecipitation (ChIP) assays were used to confirm recruitment of BRCA1 to specific promoters. In results, we demonstrate that functional BRCA1 represses the expression of cytokeratins 5(KRT5) and 17(KRT17) and p-Cadherin (CDH3) in HCC1937 and T47D breast cancer cell lines at both mRNA and protein level. ChIP assays demonstrate that BRCA1 is recruited to the promoters of KRT5, KRT17 and CDH3, and re-ChIP assays confirm that BRCA1 is recruited independently to form c-Myc and Sp1 complexes on the CDH3 promoter. We show that siRNA-mediated inhibition of endogenous c-Myc (and not Sp1) results in a marked increase in CDH3 expression analogous to that observed following the inhibition of endogenous BRCA1. The data provided suggest a model whereby BRCA1 and c-Myc form a repressor complex on the promoters of specific basal genes and represent a potential mechanism to explain the observed overexpression of key basal markers in BRCA1-deficient tumours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutrophils are activated by immunoglobulin G (IgG)-containing immune complexes through receptors that recognize the Fc portion of IgG (Fc gamma Rs). Here, we used genetic and pharmacological approaches to define a selective role for the beta isoform of phosphoinositide 3-kinase (PI3K beta) in Fc gamma R-dependent activation of mouse neutrophils by immune complexes of IgG and antigen immobilized on a plate surface. At low concentrations of immune complexes, loss of PI3K beta alone substantially inhibited the production of reactive oxygen species (ROS) by neutrophils, whereas at higher doses, similar suppression of ROS production was achieved only by targeting both PI3K beta and PI3K delta, suggesting that this pathway displays stimulus strength-dependent redundancy. Activation of PI3K beta by immune complexes involved cooperation between Fc gamma Rs and BLT1, the receptor for the endogenous proinflammatory lipid leukotriene B-4. Coincident activation by a tyrosine kinase-coupled receptor (Fc gamma R) and a heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor (BLT1) may provide a rationale for the preferential activation of the beta isoform of PI3K. PI3K beta-deficient mice were highly protected in an Fc gamma R-dependent model of autoantibody-induced skin blistering and were partially protected in an Fc gamma R-dependent model of inflammatory arthritis, whereas combined deficiency of PI3K beta and PI3K delta resulted in near-complete protection in the latter case. These results define PI3K beta as a potential therapeutic target in inflammatory disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the ability of collagen to induce signalling and functional responses in suspensions of murine platelets deficient in the FcRgamma (Fc receptor gamma) chain, which lack the collagen receptor GPVI (glycoprotein VI). In the absence of the FcRgamma chain, collagen induced a unique pattern of tyrosine phosphorylation which was potentiated by the thromboxane analogue U46619. Immunoprecipitation studies indicated that neither collagen alone nor the combination of collagen plus U46619 induced phosphorylation of the GPVI-regulated proteins Syk and SLP76 (Src homology 2-containing leucocyte protein of 76 kDa). A low level of tyrosine phosphorylation of phospholipase Cgamma2 was observed, which was increased in the presence of U46619, although the degree of phosphorylation remained well below that observed in wild-type platelets (similar to 10%). By contrast, collagen-induced phosphorylation of the adapter ADAP (adhesion- and degranulation-promoting adapter protein) was substantially potentiated by U46619 to levels equivalent to those observed in wild-type platelets. Collagen plus U46619 also induced significant phosphorylation of FAK (focal adhesion kinase). The functional significance of collagen-induced non-GPVI signals was highlighted by the ability of U46619 and collagen to induce the secretion of ATP in FcRgamma chain-deficient platelets, even though neither agonist was effective alone. Protein tyrosine phosphorylation and the release of ATP were abolished by the anti(alpha2 integrin) antibodies Ha1/29 and HMalpha2, but not by blockade of alphaIIbbeta3. These results illustrate a novel mechanism of platelet activation by collagen which is independent of the GPVI-FcRgamma chain complex, and is facilitated by binding of collagen to integrin alpha2beta1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We here describe novel aspects of CD8(+) and CD4(+) T cell subset interactions that may be clinically relevant and provide new tools for regulating the reconstitution of the peripheral CD8(+) T cell pools in immune-deficient states. We show that the reconstitution capacity of transferred isolated naive CD8(+) T cells and their differentiation of effector functions is limited, but both dramatically increase upon the co-transfer of CD4(+) T cells. This helper effect is complex and determined by multiple factors. It was directly correlated to the number of helper cells, required the continuous presence of the CD4(+) T cells, dependent on host antigen-presenting cells (APCs) expressing CD40 and on the formation of CD4/CD8/APC cell clusters. By comparing the recovery of (CD44(+)CD62L(high)) T-CM and (CD44(+)CD62L(low)) T-EM CD8(+) T cells, we found that the accumulation of TCM and TEM subsets is differentially regulated. T-CM-cell accumulation depended mainly on type I interferons, interleukin (IL)-6, and IL-15, but was independent of CD4(+) T-cell help. In contrast, TEM-cell expansion was mainly determined by CD4(+) T-cell help and dependent on the expression of IL-2R beta by CD8 cells, on IL-2 produced by CD4(+) T-cells, on IL-15 and to a minor extent on IL-6.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent identification of Myotis brandtii in Ireland raised the possibility that many roosts previously identified as M. mystacinus had the potential of being misidentified M. brandtii. Thus, the distribution and population estimates for M. mystacinus may have been over-estimated, while M. brandtii may have been under-estimated. Results from an all Ireland genetic survey of known M. mystacinus maternity roosts confirm that no long term misidentification has taken place. All specimens caught and sampled were M. mystacinus. Additonally, no further records of M. brandtii were found during six nights of woodland trapping using the acoustic lure. While the status of M. mystacinus in Ireland is now listed as ‘least concern’ in the Irish Red List, M. brandtii is listed as ‘data deficient’ and cannot currently be considered a resident species

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND:
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) regulation of the Rho-like GTPase Cdc42 has a central role in epithelial polarised growth, but effects of this molecular network on apoptosis remain unclear.

METHODS:
To investigate the role of Cdc42 in PTEN-dependent cell death, we used flow cytometry, in vitro pull-down assays, poly(ADP ribose) polymerase (PARP) cleavage and other immunoblots in isogenic PTEN-expressing and -deficient colorectal cells (HCT116PTEN(+/+), HCT116PTEN(-/-), Caco2 and Caco2 ShPTEN cells) after transfection or treatment strategies.

RESULTS:
The PTEN knockout or suppression by short hairpin RNA or small interfering RNA (siRNA) inhibited Cdc42 activity, PARP cleavage and/or apoptosis in flow cytometry assays. Transfection of cells with wild-type or constitutively active Cdc42 enhanced PARP cleavage, whereas siRNA silencing of Cdc42 inhibited PARP cleavage and/or apoptosis. Pharmacological upregulation of PTEN by sodium butyrate (NaBt) treatment enhanced Cdc42 activity, PARP cleavage and apoptosis, whereas Cdc42 siRNA suppressed NaBt-induced PARP cleavage. Cdc42-dependent signals can suppress glycogen synthase kinase-ß (GSK3ß) activity. Pharmacological inhibition of GSK3ß by lithium chloride treatment mimicked effects of Cdc42 in promotion of PARP cleavage and/or apoptosis.

CONCLUSION:
Phosphatase and tensin homologue deleted on chromosome 10 may influence apoptosis in colorectal epithelium through Cdc42 signalling, thus providing a regulatory framework for both polarised growth and programmed cell death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have shown that following whole-body irradiation bone marrow (BM)-derived cells can migrate into the central nervous system, including the retina, to give rise to microglia-like cells. The detailed mechanism, however, remains elusive. We show in this study that a single-dose whole-body ?-ray irradiation (8 Gy) induced subclinical damage (i.e., DNA damage) in the neuronal retina, which is accompanied by a low-grade chronic inflammation, para-inflammation, characterized by upregulated expression of chemokines (CCL2, CXCL12, and CX3CL1) and complement components (C4 and CFH), and microglial activation. The upregulation of chemokines CCL2 and CXCL12 and complement C4 lasted for more than 160 days, whereas the expression of CX3CL1 and CFH was upregulated for 2 weeks. Both resident microglia and BM-derived phagocytes displayed mild activation in the neuronal retina following irradiation. When BM cells from CX3CR1gfp/+ mice or CX3CR1gfp/gfp mice were transplanted to wild-type C57BL/6 mice, more than 90% of resident CD11b+ cells were replaced by donor-derived GFP+ cells after 6 months. However, when transplanting CX3CR1gfp/+ BM cells into CCL2-deficient mice, only 20% of retinal CD11b+ cells were replaced by donor-derived cells at 6 month. Our results suggest that the neuronal retina suffers from a chronic stress following whole-body irradiation, and a para-inflammatory response is initiated, presumably to rectify the insults and maintain homeostasis. The recruitment of BM-derived myeloid cells is a part of the para-inflammatory response and is CCL2 but not CX3CL1 dependent. © 2012 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of net charge (Z) of thiols in their ability to radioprotect cells has been investigated in a glutathione (GSH)-deficient strain of E. coli. This strain, 7, is deficient in the enzyme gamma-glutamylcysteine synthetase and allows the effects of added low molecular weight thiols to be studied. Using the gas explosion system it is possible to measure the chemical repair of the free-radical precursors of lethal lesions by thiols in intact cells. The first-order chemical repair rate in strain 7 is 280s(-1) in comparison with 1100s(-1) in the wild-type strain 1157. From the measured difference in the intracellular concentration of GSH between the wild-type and the mutant, this gives a second-order repair rate, k(r)'s of 1.23 +/- 0.3 X 10(5) dm(3)mol(-1)s(-1). Measurement of intracellular thiol levels after addition of various low molecular weight thiols showed that uptake was rapid, leading to stable thiol levels within 1 min. The ratios of the intracellular to extracellular concentrations (C-in/C-out) were 0.74 for 3-mercaptopropionic acid (Z=-1), 0.56 for 2-mercaptoethanol (Z=0), 1.47 for cysteamine (Z=+1) and 1.04 for WR1065 (Z=+2). The k(r)'s for these thiols were 1.3 +/- 0.5 X 10(5) dm(3)mol(-1)s(-1) for 30-mercaptopropionic acid, 3.3 +/- 1.6 x 10(5) dm(3)mol(-1)s(-1) for 2-mercaptoethanol, 3.9 +/- 1.1 X 10(5) dm(3)mol(-1)s(-1) for cysteamine and 2.7 +/- 1.1 X 10(6) dm(3)mol(-1)s(-1) for WR1065. These are lower and increase less with charge than previously published values for chemical repair in isolated pBR322 DNA, probably because of the association of nucleoproteins and polyamines with the cellular DNA of E. coli. However, the approximate three-fold increase in k(r) per unit increase in Z shows that the counter-ion condensation and co-ion depletion are important in determining the effectiveness of charged thiols in the radioprotection of E. coli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence is accumulating that irradiated cells produce some signals which interact with non-exposed cells in the same population via a bystander effect. Here, we examined whether DMSO is effective in suppressing radiation induced bystander effects in CHO and repair deficient xrs5 cells. When 1 Gy-irradiated CHO cells were treated with 0.5% DMSO for 1 hr before irradiation, the induction of micronuclei in irradiated cells was suppressed to 80% of that in non-treated irradiated cells. The suppressive effect of DMSO on the formation of bystander signals was examined and the results demonstrated that 0.5% DMSO treatment of irradiated cells completely suppressed the induction of micronuclei by the bystander effect in non-irradiated cells. It is suggested that irradiated cells ceased signal formation for bystander effects by the action of DMSO. To determine the involvement of reactive oxygen species on the formation of bystander signals, we examined oxidative stress levels using the DCFH staining method in irradiated populations. The results showed that the treatment of irradiated cells with 0.5% DMSO did not suppress oxidative stress levels. These results suggest that the prevention of oxidative stress is independent of the suppressive effect of DMSO on the formation of the bystander signal in irradiated cells. It is suggested that increased ROS in irradiated cells is not a substantial trigger of a bystander signal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Escherichia coli K-12 WcaJ and the Caulobacter crescentus HfsE, PssY, and PssZ enzymes are predicted to initiate the synthesis of colanic acid (CA) capsule and holdfast polysaccharide, respectively. These proteins belong to a prokaryotic family of membrane enzymes that catalyze the formation of a phosphoanhydride bond joining a hexose-1-phosphate with undecaprenyl phosphate (Und-P). In this study, in vivo complementation assays of an E. coli K-12 wcaJ mutant demonstrated that WcaJ and PssY can complement CA synthesis. Furthermore, WcaJ can restore holdfast production in C. crescentus. In vitro transferase assays demonstrated that both WcaJ and PssY utilize UDP-glucose but not UDP-galactose. However, in a strain of Salmonella enterica serovar Typhimurium deficient in the WbaP O antigen initiating galactosyltransferase, complementation with WcaJ or PssY resulted in O-antigen production. Gas chromatography-mass spectrometry (GC-MS) analysis of the lipopolysaccharide (LPS) revealed the attachment of both CA and O-antigen molecules to lipid A-core oligosaccharide (OS). Therefore, while UDP-glucose is the preferred substrate of WcaJ and PssY, these enzymes can also utilize UDP-galactose. This unexpected feature of WcaJ and PssY may help to map specific residues responsible for the nucleotide diphosphate specificity of these or similar enzymes. Also, the reconstitution of O-antigen synthesis in Salmonella, CA capsule synthesis in E. coli, and holdfast synthesis provide biological assays of high sensitivity to examine the sugar-1-phosphate transferase specificity of heterologous proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peroxiredoxins are ubiquitous proteins that catalyze the reduction of hydroperoxides, thus conferring resistance to oxidative stress. Using high-resolution mass spectrometry, we recently reclassified one such peroxiredoxin, bacterioferritin comigratory protein (BCP) of Escherichia coli, as an atypical 2-Cys peroxiredoxin that functions through the formation of an intramolecular disulfide bond between the active and resolving cysteine. An engineered E. coli BCP, which lacked the resolving cysteine, retained enzyme activity through a novel catalytic pathway. Unlike the active cysteine, the resolving cysteine of BCP peroxiredoxins is not conserved across all members of the family. To clarify the catalytic mechanism of native BCP enzymes that lack the resolving cysteine, we have investigated the BCP homologue of Burkholderia cenocepacia. We demonstrate that the B. cenocepacia BCP (BcBCP) homologue functions through a 1-Cys catalytic pathway. During catalysis, BcBCP can utilize thioredoxin as a reductant for the sulfenic acid intermediate. However, significantly higher peroxidase activity is observed utilizing glutathione as a resolving cysteine and glutaredoxin as a redox partner. Introduction of a resolving cysteine into BcBCP changes the activity from a 1-Cys pathway to an atypical 2-Cys pathway, analogous to the E. coli enzyme. In contrast to the native B. cenocepacia enzyme, thioredoxin is the preferred redox partner for this atypical 2-Cys variant. BCP-deficient B. cenocepacia exhibit a growth-phase-dependent hypersensitivity to oxidative killing. On the basis of sequence alignments, we believe that BcBCP described herein is representative of the major class of bacterial BCP peroxiredoxins. To our knowledge, this is the first detailed characterization of their catalytic activity. These studies support the subdivision of the BCP family of peroxiredoxins into two classes based on their catalytic activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipopolysaccharide is a major component of the outer membrane of gram-negative bacteria and provides a permeability barrier to many commonly used antibiotics. ADP-heptose residues are an integral part of the LPS inner core, and mutants deficient in heptose biosynthesis demonstrate increased membrane permeability. The heptose biosynthesis pathway involves phosphorylation and dephosphorylation steps not found in other pathways for the synthesis of nucleotide sugar precursors. Consequently, the heptose biosynthetic pathway has been marked as a novel target for antibiotic adjuvants, which are compounds that facilitate and potentiate antibiotic activity. D-alpha,beta-D-heptose-1,7-bisphosphate phosphatase (GmhB) catalyzes the third essential step of LPS heptose biosynthesis. This study describes the first crystal structure of GmhB and enzymatic analysis of the protein. Structure-guided mutations followed by steady state kinetic analysis, together with established precedent for HAD phosphatases, suggest that GmhB functions through a phosphoaspartate intermediate. This study provides insight into the structure-function relationship of GmhB, a new target for combatting gram-negative bacterial infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The glycan chain of the S-layer glycoprotein of Geobacillus stearothermophilus NRS 2004/3a is composed of repeating units [-->2)-alpha-l-Rhap-(1-->3)-beta-l-Rhap-(1-->2)-alpha-l-Rhap-(1-->], with a 2-O-methyl modification of the terminal trisaccharide at the nonreducing end of the glycan chain, a core saccharide composed of two or three alpha-l-rhamnose residues, and a beta-d-galactose residue as a linker to the S-layer protein. In this study, we report the biochemical characterization of WsaP of the S-layer glycosylation gene cluster as a UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase that primes the S-layer glycoprotein glycan biosynthesis of Geobacillus stearothermophilus NRS 2004/3a. Our results demonstrate that the enzyme transfers in vitro a galactose-1-phosphate from UDP-galactose to endogenous phosphoryl-polyprenol and that the C-terminal half of WsaP carries the galactosyltransferase function, as already observed for the UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase WbaP from Salmonella enterica. To confirm the function of the enzyme, we show that WsaP is capable of reconstituting polysaccharide biosynthesis in WbaP-deficient strains of Escherichia coli and Salmonella enterica serovar Typhimurium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

WecA is an integral membrane protein that initiates the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide (LPS) by catalyzing the transfer of N-acetylglucosamine (GlcNAc)-1-phosphate onto undecaprenyl phosphate (Und-P) to form Und-P-P-GlcNAc. WecA belongs to a large family of eukaryotic and prokaryotic prenyl sugar transferases. Conserved aspartic acids in putative cytoplasmic loops 2 (Asp90 and Asp91) and 3 (Asp156 and Asp159) were targeted for replacement mutagenesis with either glutamic acid or asparagine. We examined the ability of each mutant protein to complement O-antigen LPS synthesis in a wecA-deficient strain and also determined the steady-state kinetic parameters of the mutant proteins in an in vitro transfer assay. Apparent K(m) and V(max) values for UDP-GlcNAc, Mg(2+), and Mn(2+) suggest that Asp156 is required for catalysis, while Asp91 appears to interact preferentially with Mg(2+), possibly playing a role in orienting the substrates. Topological analysis using the substituted cysteine accessibility method demonstrated the cytosolic location of Asp90, Asp91, and Asp156 and provided a more refined overall topological map of WecA. Also, we show that cells expressing a WecA derivative C terminally fused with the green fluorescent protein exhibited a punctate distribution of fluorescence on the bacterial surface, suggesting that WecA localizes to discrete regions in the bacterial plasma membrane.