953 resultados para Data encryption (Computer science)
Resumo:
A reconfigurable scalar quantiser capable of accepting n-bit input data is presented. The data length n can be varied in the range 1... N-1 under partial-run time reconfiguration, p-RTR. Issues as improvement in throughput using this reconfigurable quantiser of p-RTR against RTR for data of variable length are considered. The quantiser design referred to as the priority quantiser PQ is then compared against a direct design of the quantiser DIQ. It is then evaluated that for practical quantiser sizes, PQ shows better area usage when both are targeted onto the same FPGA. Other benefits are also identified.
Resumo:
This paper proposes a nonlinear regression structure comprising a wavelet network and a linear term. The introduction of the linear term is aimed at providing a more parsimonious interpolation in high-dimensional spaces when the modelling samples are sparse. A constructive procedure for building such structures, termed linear-wavelet networks, is described. For illustration, the proposed procedure is employed in the framework of dynamic system identification. In an example involving a simulated fermentation process, it is shown that a linear-wavelet network yields a smaller approximation error when compared with a wavelet network with the same number of regressors. The proposed technique is also applied to the identification of a pressure plant from experimental data. In this case, the results show that the introduction of wavelets considerably improves the prediction ability of a linear model. Standard errors on the estimated model coefficients are also calculated to assess the numerical conditioning of the identification process.
Resumo:
In a world where massive amounts of data are recorded on a large scale we need data mining technologies to gain knowledge from the data in a reasonable time. The Top Down Induction of Decision Trees (TDIDT) algorithm is a very widely used technology to predict the classification of newly recorded data. However alternative technologies have been derived that often produce better rules but do not scale well on large datasets. Such an alternative to TDIDT is the PrismTCS algorithm. PrismTCS performs particularly well on noisy data but does not scale well on large datasets. In this paper we introduce Prism and investigate its scaling behaviour. We describe how we improved the scalability of the serial version of Prism and investigate its limitations. We then describe our work to overcome these limitations by developing a framework to parallelise algorithms of the Prism family and similar algorithms. We also present the scale up results of a first prototype implementation.
Resumo:
The P-found protein folding and unfolding simulation repository is designed to allow scientists to perform analyses across large, distributed simulation data sets. There are two storage components in P-found: a primary repository of simulation data and a data warehouse. Here we demonstrate how grid technologies can support multiple, distributed P-found installations. In particular we look at two aspects, first how grid data management technologies can be used to access the distributed data warehouses; and secondly, how the grid can be used to transfer analysis programs to the primary repositories --- this is an important and challenging aspect of P-found because the data volumes involved are too large to be centralised. The grid technologies we are developing with the P-found system will allow new large data sets of protein folding simulations to be accessed and analysed in novel ways, with significant potential for enabling new scientific discoveries.
Resumo:
This paper describes the implementation of a semantic web search engine on conversation styled transcripts. Our choice of data is Hansard, a publicly available conversation style transcript of parliamentary debates. The current search engine implementation on Hansard is limited to running search queries based on keywords or phrases hence lacks the ability to make semantic inferences from user queries. By making use of knowledge such as the relationship between members of parliament, constituencies, terms of office, as well as topics of debates the search results can be improved in terms of both relevance and coverage. Our contribution is not algorithmic instead we describe how we exploit a collection of external data sources, ontologies, semantic web vocabularies and named entity extraction in the analysis of underlying semantics of user queries as well as the semantic enrichment of the search index thereby improving the quality of results.
Resumo:
Data assimilation (DA) systems are evolving to meet the demands of convection-permitting models in the field of weather forecasting. On 19 April 2013 a special interest group meeting of the Royal Meteorological Society brought together UK researchers looking at different aspects of the data assimilation problem at high resolution, from theory to applications, and researchers creating our future high resolution observational networks. The meeting was chaired by Dr Sarah Dance of the University of Reading and Dr Cristina Charlton-Perez from the MetOffice@Reading. The purpose of the meeting was to help define the current state of high resolution data assimilation in the UK. The workshop assembled three main types of scientists: observational network specialists, operational numerical weather prediction researchers and those developing the fundamental mathematical theory behind data assimilation and the underlying models. These three working areas are intrinsically linked; therefore, a holistic view must be taken when discussing the potential to make advances in high resolution data assimilation.
Resumo:
Paraconsistent logics are non-classical logics which allow non-trivial and consistent reasoning about inconsistent axioms. They have been pro- posed as a formal basis for handling inconsistent data, as commonly arise in human enterprises, and as methods for fuzzy reasoning, with applica- tions in Artificial Intelligence and the control of complex systems. Formalisations of paraconsistent logics usually require heroic mathe- matical efforts to provide a consistent axiomatisation of an inconsistent system. Here we use transreal arithmetic, which is known to be consis- tent, to arithmetise a paraconsistent logic. This is theoretically simple and should lead to efficient computer implementations. We introduce the metalogical principle of monotonicity which is a very simple way of making logics paraconsistent. Our logic has dialetheaic truth values which are both False and True. It allows contradictory propositions, allows variable contradictions, but blocks literal contradictions. Thus literal reasoning, in this logic, forms an on-the- y, syntactic partition of the propositions into internally consistent sets. We show how the set of all paraconsistent, possible worlds can be represented in a transreal space. During the development of our logic we discuss how other paraconsistent logics could be arithmetised in transreal arithmetic.
Resumo:
Nine chess programs competed in July 2015 in the ICGA's World Computer Chess Championship at the Computer Science department of Leiden University. This is the official report of the event.
Resumo:
Nonlinear data assimilation is high on the agenda in all fields of the geosciences as with ever increasing model resolution and inclusion of more physical (biological etc.) processes, and more complex observation operators the data-assimilation problem becomes more and more nonlinear. The suitability of particle filters to solve the nonlinear data assimilation problem in high-dimensional geophysical problems will be discussed. Several existing and new schemes will be presented and it is shown that at least one of them, the Equivalent-Weights Particle Filter, does indeed beat the curse of dimensionality and provides a way forward to solve the problem of nonlinear data assimilation in high-dimensional systems.
Genetic algorithm inversion of the average 1D crustal structure using local and regional earthquakes
Resumo:
Knowing the best 1D model of the crustal and upper mantle structure is useful not only for routine hypocenter determination, but also for linearized joint inversions of hypocenters and 3D crustal structure, where a good choice of the initial model can be very important. Here, we tested the combination of a simple GA inversion with the widely used HYPO71 program to find the best three-layer model (upper crust, lower crust, and upper mantle) by minimizing the overall P- and S-arrival residuals, using local and regional earthquakes in two areas of the Brazilian shield. Results from the Tocantins Province (Central Brazil) and the southern border of the Sao Francisco craton (SE Brazil) indicated an average crustal thickness of 38 and 43 km, respectively, consistent with previous estimates from receiver functions and seismic refraction lines. The GA + HYPO71 inversion produced correct Vp/Vs ratios (1.73 and 1.71, respectively), as expected from Wadati diagrams. Tests with synthetic data showed that the method is robust for the crustal thickness, Pn velocity, and Vp/Vs ratio when using events with distance up to about 400 km, despite the small number of events available (7 and 22, respectively). The velocities of the upper and lower crusts, however, are less well constrained. Interestingly, in the Tocantins Province, the GA + HYPO71 inversion showed a secondary solution (local minimum) for the average crustal thickness, besides the global minimum solution, which was caused by the existence of two distinct domains in the Central Brazil with very different crustal thicknesses. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Vector field formulation based on the Poisson theorem allows an automatic determination of rock physical properties (magnetization to density ratio-MDR-and the magnetization inclination-MI) from combined processing of gravity and magnetic geophysical data. The basic assumptions (i.e., Poisson conditions) are: that gravity and magnetic fields share common sources, and that these sources have a uniform magnetization direction and MDR. In addition, the previously existing formulation was restricted to profile data, and assumed sufficiently elongated (2-D) sources. For sources that violate Poisson conditions or have a 3-D geometry, the apparent values of MDR and MI that are generated in this way have an unclear relationship to the actual properties in the subsurface. We present Fortran programs that estimate MDR and MI values for 3-D sources through processing of gridded gravity and magnetic data. Tests with simple geophysical models indicate that magnetization polarity can be successfully recovered by MDR-MI processing, even in cases where juxtaposed bodies cannot be clearly distinguished on the basis of anomaly data. These results may be useful in crustal studies, especially in mapping magnetization polarity from marine-based gravity and magnetic data. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Predictive performance evaluation is a fundamental issue in design, development, and deployment of classification systems. As predictive performance evaluation is a multidimensional problem, single scalar summaries such as error rate, although quite convenient due to its simplicity, can seldom evaluate all the aspects that a complete and reliable evaluation must consider. Due to this, various graphical performance evaluation methods are increasingly drawing the attention of machine learning, data mining, and pattern recognition communities. The main advantage of these types of methods resides in their ability to depict the trade-offs between evaluation aspects in a multidimensional space rather than reducing these aspects to an arbitrarily chosen (and often biased) single scalar measure. Furthermore, to appropriately select a suitable graphical method for a given task, it is crucial to identify its strengths and weaknesses. This paper surveys various graphical methods often used for predictive performance evaluation. By presenting these methods in the same framework, we hope this paper may shed some light on deciding which methods are more suitable to use in different situations.
Resumo:
One of the top ten most influential data mining algorithms, k-means, is known for being simple and scalable. However, it is sensitive to initialization of prototypes and requires that the number of clusters be specified in advance. This paper shows that evolutionary techniques conceived to guide the application of k-means can be more computationally efficient than systematic (i.e., repetitive) approaches that try to get around the above-mentioned drawbacks by repeatedly running the algorithm from different configurations for the number of clusters and initial positions of prototypes. To do so, a modified version of a (k-means based) fast evolutionary algorithm for clustering is employed. Theoretical complexity analyses for the systematic and evolutionary algorithms under interest are provided. Computational experiments and statistical analyses of the results are presented for artificial and text mining data sets. (C) 2010 Elsevier B.V. All rights reserved.