940 resultados para DROSOPHILA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

γ-Aminobutyric acid type A receptors (GABAA receptors) are chloride ion channels composed of five subunits, mediating fast synaptic and tonic inhibition in the mammalian brain. These receptors show near five-fold symmetry that is most pronounced in the second trans-membrane domain M2 lining the Cl- ion channel. To take advantage of this inherent symmetry, we screened a variety of aromatic anions with matched symmetry and found an inhibitor, pentacyanocyclopentdienyl anion (PCCP-) that exhibited all characteristics of an open channel blocker. Inhibition was strongly dependent on the membrane potential. Through mutagenesis and covalent modification, we identified the region α1V256-α1T261 in the rat recombinant GABAA receptor to be important for PCCP- action. Introduction of positive charges into M2 increased the affinity for PCCP- while PCCP- prevented the access of a positively charged molecule into M2. Interestingly, other anion selective cys-loop receptors were also inhibited by PCCP-, among them the Drosophila RDL GABAA receptor carrying an insecticide resistance mutation, suggesting that PCCP- could serve as an insecticide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parkinson's disease (PD) is the most common neurodegenerative movement disorder characterized by the progressive loss of dopaminergic (DA) neurons. Both environmental and genetic factors are thought to contribute to the pathogenesis of PD. Although several genes linked to rare familial PD have been identified, endogenous risk factors for sporadic PD, which account for the majority of PD cases, remain largely unknown. Genome-wide association studies have identified many single nucleotide polymorphisms associated with sporadic PD in neurodevelopmental genes including the transcription factor p48/ptf1a. Here we investigate whether p48 plays a role in the survival of DA neurons in Drosophila melanogaster and Caenorhabditis elegans. We show that a Drosophila p48 homolog, 48-related-2 (Fer2), is expressed in and required for the development and survival of DA neurons in the protocerebral anterior medial (PAM) cluster. Loss of Fer2 expression in adulthood causes progressive PAM neuron degeneration in aging flies along with mitochondrial dysfunction and elevated reactive oxygen species (ROS) production, leading to the progressive locomotor deficits. The oxidative stress challenge upregulates Fer2 expression and exacerbates the PAM neuron degeneration in Fer2 loss-of-function mutants. hlh-13, the worm homolog of p48, is also expressed in DA neurons. Unlike the fly counterpart, hlh-13 loss-of-function does not impair development or survival of DA neurons under normal growth conditions. Yet, similar to Fer2, hlh-13 expression is upregulated upon an acute oxidative challenge and is required for the survival of DA neurons under oxidative stress in adult worms. Taken together, our results indicate that p48 homologs share a role in protecting DA neurons from oxidative stress and degeneration, and suggest that loss-of-function of p48 homologs in flies and worms provides novel tools to study gene-environmental interactions affecting DA neuron survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

General transcription factor IIH (TFIIH) consists of nine sub- units: cyclin-dependent kinase 7 (Cdk7), cyclin H and MAT1 (forming the Cdk-activating-kinase or CAK complex), the two helicases Xpb/Hay and Xpd, and p34, p44, p52 and p62 (refs 1–3). As the kinase subunit of TFIIH, Cdk7 participates in basal transcription by phosphorylating the carboxy-terminal domain of the largest subunit of RNA polymerase II1,4,5. As part of CAK, Cdk7 also phosphorylates other Cdks, an essential step for their activation6–9. Here we show that the Drosophila TFIIH com- ponent Xpd negatively regulates the cell cycle function of Cdk7, the CAK activity. Excess Xpd titrates CAK activity, resulting in decreased Cdk T-loop phosphorylation, mitotic defects and lethality, whereas a decrease in Xpd results in increased CAK activity and cell proliferation. Moreover, Xpd is downregulated at the beginning of mitosis when Cdk1, a cell cycle target of Cdk7, is most active. Downregulation of Xpd thus seems to contribute to the upregulation of mitotic CAK activity and to regulate mitotic progression positively. Simultaneously, the downregulation of Xpd might be a major mechanism of mitotic silencing of basal transcription.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eph family receptor tyrosine kinases signal axonal guidance, neuronal bundling, and angiogenesis; yet the signaling systems that couple these receptors to targeting and cell-cell assembly responses are incompletely defined. Functional links to regulators of cytoskeletal structure are anticipated based on receptor mediated cell-cell aggregation and migratory responses. We used two-hybrid interaction cloning to identify EphB1-interactive proteins. Six independent cDNAs encoding the SH2 domain of the adapter protein, Nck, were recovered in a screen of a murine embryonic library. We mapped the EphB1 subdomain that binds Nck and its Drosophila homologue, DOCK, to the juxtamembrane region. Within this subdomain, Tyr594 was required for Nck binding. In P19 embryonal carcinoma cells, activation of EphB1 (ELK) by its ligand, ephrin-B1/Fc, recruited Nck to native receptor complexes and activated c-Jun kinase (JNK/SAPK). Transient overexpression of mutant EphB1 receptors (Y594F) blocked Nck recruitment to EphB1, attenuated downstream JNK activation, and blocked cell attachment responses. These findings identify Nck as an important intermediary linking EphB1 signaling to JNK.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metazoans have evolved ways to engage only the most appropriate cells for long-term tissue development and homeostasis. In many cases, competitive interactions have been shown to guide such cell selection events. In Drosophila, a process termed cell competition eliminates slow proliferating cells from growing epithelia. Recent studies show that cell competition is conserved in mammals with crucial functions like the elimination of suboptimal stem cells from the early embryo and the replacement of old T-cell progenitors in the thymus to prevent tumor formation. Moreover, new data in Drosophila has revealed that fitness indicator proteins, required for cell competition, are also involved in the culling of retinal neurons suggesting that 'fitness fingerprints' may play a general role in cell selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

STRUCTURE OF CUPIENNIUS SALEI VENOM HYALURONIDASE Hyaluronidases are important venom components acting as spreading factor of toxic compounds. In several studies this spreading effect was tested on vertebrate tissue. However, data about the spreading activity on invertebrates, the main prey organisms of spiders, are lacking. Here, a hyaluronidase-like enzyme was isolated from the venom of the spider Cupiennius salei. The amino acid sequence of the enzyme was determined by cDNA analysis of the venom gland transcriptome and confirmed by protein analysis. Two complex N-linked glycans akin to honey bee hyaluronidase glycosylations, were identified by tandem mass spectrometry. A C-terminal EGF-like domain was identified in spider hyaluronidase using InterPro. The spider hyaluronidase-like enzyme showed maximal activity at acidic pH, between 40-60°C, and 0.2 M KCl. Divalent ions did not enhance HA degradation activity, indicating that they are not recruited for catalysis. FUNCTION OF VENOM HYALURONIDASES Besides hyaluronan, the enzyme degrades chondroitin sulfate A, whereas heparan sulfate and dermatan sulfate are not affected. The end products of hyaluronan degradation are tetramers, whereas chondroitin sulfate A is mainly degraded to hexamers. Identification of terminal N-acetylglucosamine or N-acetylgalactosamine at the reducing end of the oligomers identified the enzyme as an endo-β-N-acetyl-D-hexosaminidase hydrolase. The spreading effect of the hyaluronidase-like enzyme on invertebrate tissue was studied by coinjection of the enzyme with the Cupiennius salei main neurotoxin CsTx-1 into Drosophila flies. The enzyme significantly enhances the neurotoxic activity of CsTx-1. Comparative substrate degradation tests with hyaluronan, chondroitin sulfate A, dermatan sulfate, and heparan sulfate with venoms from 39 spider species from 21 families identified some spider families (Atypidae, Eresidae, Araneidae and Nephilidae) without activity of hyaluronidase-like enzymes. This is interpreted as a loss of this enzyme and fits quite well the current phylogenetic idea on a more isolated position of these families and can perhaps be explained by specialized prey catching techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertebrate limbs grow out from the flanks of embryos, with their main axis extending proximodistally from the trunk. Distinct limb domains, each with specific traits, are generated in a proximal-to-distal sequence during development. Diffusible factors expressed from signalling centres promote the outgrowth of limbs and specify their dorsoventral and anteroposterior axes. However, the molecular mechanism by which limb cells acquire their proximodistal (P-D) identity is unknown. Here we describe the role of the homeobox genes Meis1/2 and Pbx1 in the development of mouse, chicken and Drosophila limbs. We find that Meis1/2 expression is restricted to a proximal domain, coincident with the previously reported domain in which Pbx1 is localized to the nucleus, and resembling the distribution of the Drosophila homologues homothorax (hth) and extradenticle (exd); that Meis1 regulates Pbx1 activity by promoting nuclear import of the Pbx1 protein; and that ectopic expression of Meis1 in chicken and hth in Drosophila disrupts distal limb development and induces distal-to-proximal transformations. We suggest that restriction of Meis1/Hth to proximal regions of the vertebrate and insect limb is essential to specify cell fates and differentiation patterns along the P-D axis of the limb.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regulation of tissue size requires fine tuning at the single-cell level of proliferation rate, cell volume, and cell death. Whereas the adjustment of proliferation and growth has been widely studied [1, 2, 3, 4 and 5], the contribution of cell death and its adjustment to tissue-scale parameters have been so far much less explored. Recently, it was shown that epithelial cells could be eliminated by live-cell delamination in response to an increase of cell density [6]. Cell delamination was supposed to occur independently of caspase activation and was suggested to be based on a gradual and spontaneous disappearance of junctions in the delaminating cells [6]. Studying the elimination of cells in the midline region of the Drosophila pupal notum, we found that, contrary to what was suggested before, Caspase 3 activation precedes and is required for cell delamination. Yet, using particle image velocimetry, genetics, and laser-induced perturbations, we confirmed [ 6] that local tissue crowding is necessary and sufficient to drive cell elimination and that cell elimination is independent of known fitness-dependent competition pathways [ 7, 8 and 9]. Accordingly, activation of the oncogene Ras in clones was sufficient to compress the neighboring tissue and eliminate cells up to several cell diameters away from the clones. Mechanical stress has been previously proposed to contribute to cell competition [ 10 and 11]. These results provide the first experimental evidences that crowding-induced death could be an alternative mode of super-competition, namely mechanical super-competition, independent of known fitness markers [ 7, 8 and 9], that could promote tumor growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell-cell intercalation is used in several developmental processes to shape the normal body plan. There is no clear evidence that intercalation is involved in pathologies. Here we use the proto-oncogene myc to study a process analogous to early phase of tumour expansion: myc-induced cell competition. Cell competition is a conserved mechanism driving the elimination of slow-proliferating cells (so-called 'losers') by faster-proliferating neighbours (so-called 'winners') through apoptosis and is important in preventing developmental malformations and maintain tissue fitness. Here we show, using long-term live imaging of myc-driven competition in the Drosophila pupal notum and in the wing imaginal disc, that the probability of elimination of loser cells correlates with the surface of contact shared with winners. As such, modifying loser-winner interface morphology can modulate the strength of competition. We further show that elimination of loser clones requires winner-loser cell mixing through cell-cell intercalation. Cell mixing is driven by differential growth and the high tension at winner-winner interfaces relative to winner-loser and loser-loser interfaces, which leads to a preferential stabilization of winner-loser contacts and reduction of clone compactness over time. Differences in tension are generated by a relative difference in F-actin levels between loser and winner junctions, induced by differential levels of the membrane lipid phosphatidylinositol (3,4,5)-trisphosphate. Our results establish the first link between cell-cell intercalation induced by a proto-oncogene and how it promotes invasiveness and destruction of healthy tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA sequence variation is currently a major source of data for studying human origins, evolution, and demographic history, and for detecting linkage association of complex diseases. In this dissertation, I investigated DNA variation in worldwide populations from two ∼10 kb autosomal regions on 22q11.2 (noncoding) and 1q24 (introns). A total of 75 variant sites were found among 128 human sequences in the 22q11.2 region, yielding an estimate of 0.088% for nucleotide diversity (π), and a total of 52 variant sites were found among 122 human sequences in the 1q24 region with an estimated π value of 0.057%. The data from these two regions and a 10 kb noncoding region on Xq13.3 all show a strong excess of low-frequency variants in comparison to that expected from an equilibrium population, indicating a relatively recent population expansion. The effective population sizes estimated from the three regions were 11,000, 12,700, and 8,600, respectively, which are close to the commonly used value of 10,000. In each of the two autosomal regions, the age of the most recent common ancestor (MRCA) was estimated to be older than 1 million years among all the sequences and ∼600,000 years among non-African sequences, providing first evidence from autosomal noncoding or intronic regions for a genetic history of humans much more ancient than the emergence of modern humans. The ancient genetic history of humans indicates no severe bottleneck during the evolution of humans in the last half million years; otherwise, much of the ancient genetic history would have been lost during a severe bottleneck. This study strongly suggests that both the “out of Africa” and the multiregional models are too simple for explaining the evolution of modern humans. A compilation of genome-wide data revealed that nucleotide diversity is highest in autosomal regions, intermediate in X-linked regions, and lowest in Y-linked regions. The data suggest the existence of background selection or selective sweep on Y-linked loci. In general, the nucleotide diversity in humans is low compared to that in chimpanzee and Drosophila populations. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinitis pigmentosa (RP) is a name given to a group of inherited retinal dystrophies that lead to progressive photoreceptor degeneration, and thus, visual impairment. It is evident at both the clinical and the molecular level that these are heterogeneous disorders, with wide variation in severity, mode of inheritance, and phenotype. The genetics of RP are not simple; the disease can be inherited in dominant, recessive, X-linked, and digenic modes. Autosomal dominant RP (adRP) results from mutations in at least ten mapped loci, but there may be dozens of genetic loci where mutations can cause RP. To date, there are over a hundred genes known to cause retinal degenerative diseases, and less than half of these have been cloned (RetNet). Among the dozens of retinitis pigmentosa loci known to exist, only a few have been identified and the remainders are inferred from linkage studies. Today, the genes for seven of the twelve-adRP loci have been identified, and these are rhodopsin, peripherin/RDS, NRL, ROM1, CRX, RP13 and RP1. My research projects involved a combination of the continued search for genes involved in retinal dystrophies, as well the investigation into the role of peripherin/RDS and RP1 in the disease etiology of autosomal dominant RP. ^ Most of the mutations leading to inherited retinal disorders have been identified in predominately retina expressed genes like rhodopsin, peripherin/RDS, and RP1. Expressed sequence tags (ESTs) that were retina-specific were culled from sequence databases and, together with laboratory analysis, were analyzed as potential candidate genes for retinal dystrophies. Thirteen of the fifty-five identified retina-specific ESTs mapped to within candidate regions for inherited retinopathies. One of these is RP1L1, a homologue of RP1 and a potential cause of adRP. ^ Once a disease-associated gene has been identified, elucidating the role of that gene in the visual process is essential for understanding what happens when the process is defective as it is in adRP. My next projects involved investigating the role of a novel 5′ donor +3 splice site mutation on the mRNA of peripherin/RDS in adRP affected individuals, and comparative sequencing in RP1 to define conserved regions of the protein. Comparative sequencing is a powerful way to delineate critical regions of a sequence because different regions of a gene have different functions, and each region is subject to different levels of functional or structural constraints. Establishing a framework of conserved domains is beneficial not only for structural or functional studies, but can also aid in determining the potential effects of mutations. With the completion of sequencing of human genome, and other organisms such as Saccharomyces cerevisiae, Caenorhabditis elegans , and Drosophila, the facility of comparative sequencing will only increase in the future. Comparative sequencing has already become an established procedure for pinpointing conserved regions of a protein, and is an efficient way to target regions of a protein for experimental and/or evolutionary analysis. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lodestar, a Drosophila maternal-effect gene, is essential for proper chromosome segregation during embryonic mitosis. Mutations in lodestar cause chromatin bridging in anaphase, preventing the sister chromatids from fully separating and leaving chromatin tangled at the metaphase plate. Drosophila lodestar protein was originally identified, in purified fractions of Drosophila Kc cell nuclear extracts, by its ability to suppress the generation of long RNA polymerase II transcripts. The human homolog of this protein (hLodestar) was cloned and studied in comparison to the Drosophila lodestar activities. The results of these studies show, similar to the Drosophila protein, hLodestar has dsDNA-dependent ATPase and transcription termination activity in vitro. hLodestar has also been shown to release RNA polymerase I and II stalled at a cyclobutane thymine dimer. Lodestar belongs to the SNF2 family of proteins, which are members of the DExH/D helicase super-family. The SNF2 family of proteins are believed to play a critical role in altering protein-DNA interactions in a variety of cellular contexts. We have recently isolated a human cDNA (hLodestar) that shares significant homology to the Drosophila lodestar gene. The 4.6 kb clone contains an open reading frame of 1162 amino acids, and shares 55% similarity and 46% identity to the Drosophila Lodestar protein sequence. Our studies looking for hLodestar interacting proteins revealed an association with CDC5L in the yeast two-hybrid system and co-immunoprecipitation experiments. CDC5L has been well documented to be a component of the spliceosome. Our data suggests hLodestar is involved in splicing through in vitro assembly and splicing reactions, in addition to its association with spliceosomes purified from HeLa nuclear extract. Although many other members of the DExH/D helicase super-family have been linked to splicing, this is the first SNF2 family member to be implicated in the splicing reaction. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complex molecular events underlie vertebrate eye development and disease. The eye is composed of two major tissue types: the anterior and posterior segments. During development, the retinal progenitor cells differentiate into six neuronal and one non-neuronal cell types. These cell types later organize into the distinct laminar structure of the mature retina which occupies the posterior segment. In the developed anterior segment, both the ciliary body and trabecular meshwork regulate intraocular pressure created by the aqueous humor. The disruption in intraocular pressure can lead to a blinding condition called glaucoma. To characterize molecular mechanisms governing retinal development and glaucoma, two separate mouse knockout lines carrying mutations in math5 and myocilin were subjected to a series of in vivo analyses. ^ Math5 is a murine homologue of Drosophila atonal , a bHLH proneural gene essential for the formation of photoreceptor cells. The expression of math5 coincides with the onset of retinal ganglion cell differentiation. The targeted deletion of mouse math5 revealed that a null mutation inhibits the formation of a majority of the retinal ganglion cells. The mutation also interferes with the normal development of other retinal cell types such as amacrine, bipolar and photoreceptor cells. These results suggest that math5 is a proneural gene responsible for differentiation of retinal ganglion cells and may also have a role in normal development of other neuronal cell types within the retina. ^ Myocilin has two unique protein coding regions bearing homology to non-muscle myosin of Dictyostelium discoideum and to olfactomedin, an extracellular matrix molecule first described in the olfactory epithelium of the bullfrog. Recently, autosomal dominant forms of myocilin mutations have been found in individuals with primary open-angle glaucoma. The genetic linkage to glaucoma suggests a role of myocilin in normal intraocular pressure and ocular function. However, the analysis of mice heterozygous and homozygous for a targeted null mutation in myocilin indicates that it is dispensable for normal intraocular pressure or ocular function. Additionally, the lack of a discernable phenotype in both heterozygous and null mice suggests that haploinsufficiency is not a critical mechanism for MYOC-associated glaucoma in humans. Instead, disease-causing mutations likely act by gain of function. ^ In summary, these studies provide novel insights into the embryonic development of the vertebrate retina, and also begin to uncover the molecular mechanisms responsible for the pathogenesis of glaucoma. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Notch signaling pathway plays a central role in metazoan growth and patterning, and its deregulation leads to many human diseases, including cancer. It is therefore important to understand the modes of Notch signaling regulation. Recent discoveries have demonstrated that mutations in conserved endosomal pathway components such as Erupted and Vps25 can ectopically activate Notch signaling in Drosophila. Mutations in the tumor suppressor lethal giant discs (lgd) display similar but even stronger and more specific Notch activation than in the erupted and vps25 mutant animals. This Notch activation in lgd mutant tissues causes hyperplastic overgrowth of the Drosophila imaginal discs, and the eventual lethality of the animal. However, the gene that encodes Lgd, and its function in the Notch pathway have not yet been identified. ^ I have found that Lgd is a novel, conserved C2 domain protein that regulates Notch trafficking. Lgd cell-autonomously restricts Notch signaling in the Drosophila wing disc to the target cells in the D/V boundary. The function of Lgd lies at or upstream of Notch S3 activation, but Lgd doesn't affect the binding affinities between Notch and Delta. Lgd is also not required for cis-inhibition of Notch signaling by ligands. Notch accumulates on the early endosome in lgd mutant cells and signals in a ligand-independent manner, a result that has previously been seen in endosomal pathway mutants. Interestingly, Notch activation in lgd mutant cells is dependent on the endosomal protein Hrs, and Lgd activity appears to be downstream of Hrs function in endocytosis. Taken together, my data identify Lgd as a novel tumor suppressor protein that regulates Notch signaling by targeting Notch for degradation or recycling. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In response to tumor hypoxia, specific genes that promote angiogenesis, proliferation, and survival are induced. Globally, I find that hypoxia induces a mixed pattern of histone modifications that are typically associated with either transcriptional activation or repression. Furthermore, I find that selective activation of hypoxia-inducible genes occurs simultaneously with widespread repression of transcription. I analyzed histone modifications at the core promoters of hypoxia-repressed and -activated genes and find that distinct patterns of histone modifications correlate with transcriptional activity. Additionally, I discovered that trimethylated H3-K4, a modification generally associated with transcriptional activation, is induced at both hypoxia-activated and repressed genes, suggesting a novel pattern of histone modifications induced during hypoxia. ^ In order to determine the mechanism of hypoxia-induced widespread repression of transcription, I focused my studies on negative cofactor 2 (NC2). Previously, we found that hypoxia-induced repression of the alpha-fetoprotein (AFP) gene occurs during preinitiation complex (PIC) assembly, and I find that NC2, an inhibitor of PIC assembly, is induced during hypoxia. Moreover, I find that the beta subunit of NC2 is essential for hypoxia-mediated repression of AFP, as well as the widespread repression of transcription observed during hypoxia. Previous data in Drosophila and S. cerevisiae indicate that NC2 functions as either an activator or a repressor of transcription. The mechanism of NC2-mediated activation remains unclear; although, Drosophila NC2 function correlates with specific core promoter elements. I tested if NC2 activates transcription in mammalian cells using this core promoter-specific model as a guide. Utilizing site-specific mutagenesis, I find that NC2 function in mammalian cells is not dependent upon specific core promoter elements; however, I do find that mammalian NC2 does function in a gene-specific manner as either an activator or repressor of transcription during hypoxia. Furthermore, I find that binding of the alpha subunit of NC2 specifically correlates with NC2-mediated transcriptional activation. NC2α and NC2β are both required for NC2-mediated transcriptional activation; whereas, NC2β alone is required for hypoxia-induced transcriptional repression. Together, these data indicate that hypoxia mediates changes in gene expression through both chromatin modifications and NC2 function. ^