975 resultados para DNA Fragment Assembly


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA methyltransferases (MTases) are a group of enzymes that catalyze the methyl group transfer from S-adenosyl-L-methionine in a sequence-specific manner. Orthodox Type II DNA MTases usually recognize palindromic DNA sequences and add a methyl group to the target base (either adenine or cytosine) on both strands. However, there are a number of MTases that recognize asymmetric target sequences and differ in their subunit organization. In a bacterial cell, after each round of replication, the substrate for any MTase is hemimethylated DNA, and it therefore needs only a single methylation event to restore the fully methylated state. This is in consistent with the fact that most of the DNA MTases studied exist as monomers in solution. Multiple lines of evidence suggest that some DNA MTases function as dimers. Further, functional analysis of many restriction-modification systems showed the presence of more than one or fused MTase genes. It was proposed that presence of two MTases responsible for the recognition and methylation of asymmetric sequences would protect the nascent strands generated during DNA replication from cognate restriction endonuclease. In this review, MTases recognizing asymmetric sequences have been grouped into different subgroups based on their unique properties. Detailed characterization of these unusual MTases would help in better understanding of their specific biological roles and mechanisms of action. The rapid progress made by the genome sequencing of bacteria and archaea may accelerate the identification and study of species- and strain-specific MTases of host-adapted bacteria and their roles in pathogenic mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA helicases are present in all kingdoms of life and play crucial roles in processes of DNA metabolism such as replication, repair, recombination, and transcription. To date, however, the role of DNA helicases during homologous recombination in mycobacteria remains unknown. In this study, we show that Mycobacterium tuberculosis UvrD1 more efficiently inhibited the strand exchange promoted by its cognate RecA, compared to noncognate Mycobacterium smegmatis or Escherichia coli RecA proteins. The M. tuberculosis UvrD1(Q276R) mutant lacking the helicase and ATPase activities was able to block strand exchange promoted by mycobacterial RecA proteins but not of E. coil RecA. We observed that M. tuberculosis UvrA by itself has no discernible effect on strand exchange promoted by E. coli RecA but impedes the reaction catalyzed by the mycobacterial RecA proteins. Our data also show that M. tuberculosis UvrA and UvrD1 can act together to inhibit strand exchange promoted by mycobacterial RecA proteins. Taken together, these findings raise the possibility that UvrD1 and UvrA might act together in vivo to counter the deleterious effects of RecA nucleoprotein filaments and/or facilitate the dissolution of recombination intermediates. Finally, we provide direct experimental evidence for a physical interaction between M. tuberculosis UvrD1 and RecA on one hand and RecA and UvrA on the other hand. These observations are consistent with a molecular mechanism, whereby M. tuberculosis UvrA and UvrD1, acting together, block DNA strand exchange promoted by cognate and noncognate RecA proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tau is mainly distributed in cytoplasm and also found to be localized in the nucleus. There is limited data on DNA binding potential of Tau.We provide novel evidence on nicking of DNA by Tau. Tau nicks the supercoiled DNA leading to open circular and linear forms. The metal ion magnesium (a co-factor for endonuclease) enhanced the Tau DNA nicking ability, while an endonuclease specific inhibitor,aurinetricarboxylic acid (ATA) inhibited the Tau DNA nicking ability Further, we also evidenced that Tau induces B-C-A mixed conformational transition in DNA and also changes DNA stability. Tau-scDNA complex is more sensitive to DNAse I digestion indicating stability changes in DNA caused by Tau. These findings indicate that Tau alters DNA helicity and integrity and also nicks the DNA. The relevance of these novel intriguing findings regarding the role Tau in neuronal dysfunction is discussed. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction of the DNA binding nonintercalators Netropsin, Distamycin and the mPD derivative with Z-DNA has been studied. It has been found that environmental factors like the solvent and added cations significantly modulate the interaction of these ligands with Z-DNA. However no definite Z to B transition in presence of these ligands was found in any case, in contrast to previously reported results (Ch. Zimmer, C. Marck and W. Guschlbauer, FEBS Lett. 154, 156-160 (1983)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct injection of genomic DNA from salt tolerant cv. Pokkali into developing floral tillers on IR20 produced transgenic seeds similar to Pokkali in husk colour and which germinated well in 0.2 M NaCl and had a 4-6-fold higher proline content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymorphic forms of the DNA duplex with long stretches of structural monotony are known. Several alternating purine-pyrimidine sequences have been shown to adopt left-handed Z-conformation. We report a DNA sequence d(CGCGCGATCGAT)n exhibiting alternating right-handed B and left-handed Z helical conformation after every half a turn. Further, this unusual conformation with change in handedness after every six base pairs was induced at physiological superhelical density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extremities of chromosomes end in a G-rich single-stranded overhang that has been implicated in the onset of the replicate senescence. The repeated sequence forming a G-overhang is able to adopt a four-stranded DNA structure called G-quadruplex, which is a poor substrate for the enzyme telomerase. Small molecule based ligands that selectively stabilize the telomeric G-quadruplex DNA, induce telomere shortening eventually leading to cell death. Herein, we have investigated the G-quadruplex DNA interaction with two isomeric bisbenzimidazole-based compounds that differ in terms of shape (V-shaped angular vs linear).While the linear isomer induced some stabilization of the intramolecular G-quadruplex structure generated in the presence of Na+ the other, having V-shaped central planar core, caused a dramatic structural alteration of the latter, above a threshold concentration. This transition was evident from the pronounced changes observed in the circular dichroism spectra and from the get mobility shift assa involving the G-quadruples DNA. Notably, this angular isomer could also induce the G-quadruplex formation in the absence of any added cation. The ligand-quadruples complexes were investigated by computational molecular modeling, providing further information on structure-activity relationships. Finally, TRAP (telomerase repeat amplification protocol) experiments demonstrated that the angular isomer is selective toward the inhibition of telomerase activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a generic study of inventory costs in a factory stockroom that supplies component parts to an assembly line. Specifically, we are concerned with the increase in component inventories due to uncertainty in supplier lead-times, and the fact that several different components must be present before assembly can begin. It is assumed that the suppliers of the various components are independent, that the suppliers' operations are in statistical equilibrium, and that the same amount of each type of component is demanded by the assembly line each time a new assembly cycle is scheduled to begin. We use, as a measure of inventory cost, the expected time for which an order of components must be held in the stockroom from the time it is delivered until the time it is consumed by the assembly line. Our work reveals the effects of supplier lead-time variability, the number of different types of components, and their desired service levels, on the inventory cost. In addition, under the assumptions that inventory holding costs and the cost of delaying assembly are linear in time, we study optimal ordering policies and present an interesting characterization that is independent of the supplier lead-time distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxovanadium(IV) complexes [VO(sal-argH)(B)] Cl (1-3) and [VO(sal-lysH)(B)] Cl (4-6), where sal-argH2 and sal-lysH(2) are N-salicylidene-L-arginine and N-salicylidene-L-lysine Schiff bases and B is a phenanthroline base, viz. 1,10-phenanthroline (phen in 1 and 4); dipyrido[3,2-d: 2', 3'-f] quinoxaline (dpq in 2 and 5) and dipyrido[3,2-a: 2', 3'-c] phenazine (dppz in 3 and 6), have been prepared, characterized and their DNA photocleavage activity studied. Complex 1, characterized by X-ray crystallography, shows the presence of a vanadyl group in VIVO3N3 coordination geometry with a tridentate Schiff base having a pendant guanidinium moiety and bidentate phen ligand. The complexes exhibit a d-d band at similar to 715 nm in 20% DMF-Tris-HCl buffer. The complexes are redox active showing cathodic and anodic responses near -1.0 V and 0.85 V (vs. SCE) for the V(IV)-V(III) and V(V)-V(IV) couples, respectively, in DMF-Tris-HCl buffer. The complexes bind to calf thymus DNA giving Kb values in the range of 3.8 x 10(4) to 1.6 x 10(5) M-1. Thermal denaturation and viscosity data suggest DNA groove binding nature of the complexes. The complexes do not show any `chemical nuclease'' activity in dark in the presence of 3-mercaptopropionic acid or H2O2. The dpq and dppz complexes are efficient photocleavers of plasmid DNA in UV-A (365 nm) and red light (676 nm) via singlet oxygen pathway. The dppz complexes exhibit photocytotoxicity in HeLa cancer cells giving IC50 values of 15.4 mu M for 3 and 17.5 mu M for 6 in visible light while being non-toxic in dark giving IC50 values of > 100 mu M.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three direct repeats of 320, 340 and 238 nucleotides were detected upstream to the 5′ end of the 18S rRNA gene of an rDNA unit present on a 9.8 kb EcoRT fragment of the rice DNA. The primer extension analysis showed that the site of initiation of transcription is in the 1st repeat at an A, the 623rd nucleotide upstream to the 5′ end of the 18S rRNA gene. Different stretches of the intergenic spacer DNA linked to the Chloramphenicol acetyl transferase gene were transcribed in the intact nuclei of rice embryos. The S1 nuclease protection analysis of the transcripts using [32P]-labelled Chloramphenicol acetyl transferase gene as the probe showed the presence of multiple promoters for rDNA transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our finding that the inhibitors of DNA methylation, 5-azacytidine, 5-azadeoxycytidine or adenosine dialdehyde, given after a carcinogen all potentiated initiation suggested that hypomethylation of DNA during repair synthesis of DNA might play a role in the initiation of the carcinogenic process. To examine this aspect further, we have asked the question, do the nodules which develop from initiated cells after promotion with 1% orotic acid exhibit an altered methylation pattern in their DNA? The methylation status of the DNA from nodules has been examined using the restriction endonucleases HpaII/MspI and HhaI which distinguish between methylated and unmethylated cytosines in their nucleotide recognition DNA 5'-CCGG and 5'-GCGC respectively. The proto-oncogenes, c-myc, c-fos and c-Ha-ras, in the DNA were primarily studied in this investigation because of their possible involvement in cell proliferation and/or in cell transformation and tumorigenesis. The results indicate that in the nodule DNA, c-myc and c-fos are hypomethylated in the sequence of CCGG while the c-Ha-ras shows hypomethylation in the alternating GCGC sequence. This methylation pattern seen in the nodule DNA is not found in the DNA of the non-nodular surrounding liver or liver tissue after exposure to promoter or carcinogen alone. It is also not found in the DNA of regenerating liver. It is particularly significant that the methylation patterns in the c-myc and c-Ha-ras regions are similar to those found in several cancer tissues. The results suggest that this methylation pattern is acquired early in the carcinogenic process and raises the question whether it has any bearing on the process.