1000 resultados para DIVALENT LANTHANIDE CHEMISTRY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nesta tese relatam-se estudos de fotoluminescência de nanopartículas de óxidos e fosfatos dopados com iões trivalentes de lantanídeos, respectivamente, nanobastonetes de (Gd,Eu)2O3 e (Gd,Yb,Er)2O3 e nanocristais de (Gd,Yb,Tb)PO4, demonstrando-se também aplicações destes materiais em revestimentos inteligentes, sensores de temperatura e bioimagem. Estuda-se a transferência de energia entre os sítios de Eu3+ C2 e S6 dos nanobastonetes Gd2O3. A contribuição dos mecanismos de transferência de energia entre sítios para o tempo de subida 5D0(C2) é descartada a favor da relaxação directa 5D1(C2) 5D0(C2) (i.e., transferência de energia entre níveis). O maior tempo de decaimento do nível 5D0(C2) nos nanobastonetes, relativamente ao valor medido para o mesmo material na forma de microcristais, é atribuído, quer à existência de espaços livres entre nanobastonetes próximos (factor de enchimento ou fracção volúmica), quer à variação do índice de refracção efectivo do meio em torno dos iões Eu3+. A dispersão de nanobastonetes de (Gd,Eu)2O3 em três resinas epoxi comerciais através da cura por UV permite obter nanocompósitos epoxi- (Gd,Eu)2O3. Relatam-se estudos cinéticos e das propriedades térmicas e de fotoluminescência destes nanocompósitos. Estes, preservam as típicas propriedades de emissão do Eu3+, mostrando o potencial do método de cura por UV para obter revistimentos inteligentes e fotoactivos. Considera-se um avanço significativo a realização de uma nanoplataforma óptica, incorporando aquecedor e termómetro e capaz de medir uma ampla gama de temperaturas (300-2000 K) à escala nano, baseada em nanobastonetes de (Gd,Yb,Er)2O3 (termómetros) cuja superfície se encontra revestida com nanopartículas de ouro. A temperature local é calculada usando, quer a distribuição de Boltzmann (300-1050 K) do rácio de intensidades da conversão ascendente 2H11=2!4I15=2/4S3=2!4I15=2, quer a lei de Planck (1200-2000 K) para uma emissão de luz branca atribuída à radiação do corpo negro. Finalmente, estudam-se as propriedades de fotoluminescência correspondentes às conversões ascendente e descendente de energia em nanocristais de (Gd,Yb,Tb)PO4 sintetizados por via hidrotérmica. A relaxividade (ressonância magnética) do 1H destes materiais são investigadas, tendo em vista possíveis aplicações em imagem bimodal (luminescência e ressonância magnética nuclear).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Química Farmacêutica e Terapêutica), Universidade de Lisboa, Faculdade de Farmácia, 2016

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fabricating Ge and Si integrated structures with nanoscale accuracy is a challenging pursuit essential for novel advances in electronics and photonics. While several scanning probe-based techniques have been proposed, no current technique offers control of nanostructure size, shape, placement, and chemical composition. To this end, atomic force microscope direct write uses a high electric field (> 109 V m-1) to create nanoscale features as fast as 1 cm s-1 by reacting a liquid precursor with a biased AFM tip. In this work, I present the first results on fabricating inorganic nanostructures via AFM direct write. Using diphenylgermane (DPG) and diphenylsilane (DPS), carbon-free germanium and silicon nanostructures (SIMS, x-ray PEEM) are fabricated. For this chemistry, I propose a model that involves electron capture and precursor fragmentation under the high electric field. To verify this model, experimental data and simulations are presented. High field chemistry for DPG and DPS has also been demonstrated for both sequential deposition and the creation of nanoscale heterostuctures, in addition to microscale deposition using a flexible stamp approach. This high field chemistry approach to the deposition of organometallic precursors could offer a low-cost, high throughput alternative for future optical, electronic, and photovoltaic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study shows that the relaxivity and optical properties of functionalised lanthanide-DTPA-bis-amide complexes (lanthanide=Gd3+ and Eu3+, DTPA=diethylene triamine pentaacetic acid) can be successfully modulated by addition of specific anions, without direct Ln3+/anion coordination. Zinc(II)-dipicolylamine moieties, which are known to bind strongly to phosphates, were introduced in the amide “arms” of these ligands, and the interaction of the resulting Gd–Zn2 complexes with a range of anions was screened by using indicator displacement assays (IDAs). Considerable selectivity for polyphosphorylated species (such as pyrophosphate and adenosine-5′-triphosphate (ATP)) over a range of other anions (including monophosphorylated anions) was apparent. In addition, we show that pyrophosphate modulates the relaxivity of the gadolinium(III) complex, this modulation being sufficiently large to be observed in imaging experiments. To establish the binding mode of the pyrophosphate and gain insight into the origin of the relaxometric modulation, a series of studies including UV/Vis and emission spectroscopy, luminescence lifetime measurements in H2O and D2O, 17O and 31P NMR spectroscopy and nuclear magnetic resonance dispersion (NMRD) studies were carried out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today more than 99% of plastics are petroleum-based because of availability and cost of the raw material. The durability of these disposed plastics contributes to the environmental problems as waste and their persistence in the environment causes deleterious effects on the ecosystem. Environmental pollution awareness and the demand for green technology have drawn considerable attention of both academia and industry into biodegradable polymers. In this regard green chemistry technology has the potential to provide solution to this problematic issue. Laccase bio-grafting has recently been the focus of green chemistry technologies due to the growing environmental concerns, legal restrictions and increasing availability of scientific knowledge. In the last several years, research covering various applications of laccases has been increased rapidly particularly in the field of grafting. In principle, laccase-assisted graft co-polymerization may impart a variety of new functionalities to a polymer. The modified polymers through grafting have a bright future and their development is practically boundless. In present work, novel biodegradable graft copolymers combining the advantages of bacterial cellulose backbone and PHB side chains will be prepared by introducing enzymatic grafting technique. The present research will be a first step in the biopolymer modification. To date no report has been found in literature explaining the enzymatic grafting of PHAs. The technique would also provide an efficient modulation approach to improve the biodegradability and biocompatibility of the graft copolymer. The newly grafted copolymers will exhibit unique functionalities with wider range of potential applications mainly in tissue engineering, biosensors, pharmaceutical industry (drug delivery systems) and bio-plastics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica - Ramo de Bioprocessos

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well accepted that structural studies with model membranes are of considerable value in understanding the structure of biological membranes. Many studies with models of pure phospholipids have been done; but the effects of divalent cations and protein on these models would make these studies more applicable to intact membrane. The present study, performed with above view, is a structural analysis of divalent io~cardio1ipin complexes using the technique of x-ray diffraction. Cardiolipin, precipitated from dilute solution by divalent ionscalcium, magnesium and barium, contains little water and the structure formed is similar to the structure of pure cardiolipin with low water content. The calcium-cardiolipin complex forms a pure hexagonal type II phase that exists from 40 to 400 C. The molar ratio of calcium and cardiolipin in the complex is 1 : 1. Cardiolipin, precipitated with magnesium and barium forms two co-existing phases, lamellar and hexagonal, the relative quantity of the two phases being dependent on temperature. The hexagonal phase type II consisting of water filled channels formed by adding calcium to cardiolipin may have a remarkable permeability property in intact membrane. Pure cardiolipin and insulin at pH 3.0 and 4.0 precipitate but form no organised structure. Lecithin/cardiolipin and insulin precipitated at pH 3.0 give a pure lamellar phase. As the lecithin/cardiolipin molar ratio changes from 93/7 to SO/50, (a) the repeat distance of the lamellar changes from 72.8 X to 68.2 A; (b) the amount of protein bound increases in such a way that cardiolipin/insulin molar ratio in the complex reaches a maximum constant value at lecithin/cardiolipin molar ratio 70/30. A structural model based on these data shows that the molecular arrangement of lipid and protein is a lipid bilayer coated with protein molecules. The lipid-protein interaction is chiefly electrostatic and little, if any, hydrophobic bonding occurs in this particular system. So, the proposed model is essentially the same as Davson-Daniellifs model of biological membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new families of building blocks have been prepared and fully characterized and their coordination chemistry exploited for the preparation of molecule-based magnetic materials. The first class of compounds were prepared by exploiting the chemistry of 3,3'-diamino-2,2'-bipyridine together with 2-pyridine carbonyl chloride or 2-pyridine aldehyde. Two new ligands, 2,2'-bipyridine-3,3'-[2-pyridinecarboxamide] (Li, 2.3) and N'-6/s(2-pyridylmethyl) [2,2'bipyridine]-3,3'-diimine (L2, 2.7), were prepared and characterized. For ligand L4, two copper(II) coordination compounds were isolated with stoichiometrics [Cu2(Li)(hfac)2] (2.4) and [Cu(Li)Cl2] (2.5). The molecular structures of both complexes were determined by X-ray crystallography. In both complexes the ligand is in the dianionic form and coordinates the divalent Cu(II) ions via one amido and two pyridine nitrogen donor atoms. In (2.4), the coordination geometry around both Cu11 ions is best described as distorted trigonal bipyramidal where the remaining two coordination sites are satisfied by hfac counterions. In (2.5), both Cu(II) ions adopt a (4+1) distorted square pyramidal geometry. One copper forms a longer apical bond to an adjacent carbonyl oxygen atom, whereas the second copper is chelated to a neighboring Cu-Cl chloride ion to afford chloride bridged linear [Cu2(Li)Cl2]2 tetramers that run along the c-axis of the unit cell. The magnetic susceptibility data for (2.4) reveal the occurrence of weak antiferromagnetic interactions between the copper(II) ions. In contrast, variable temperature magnetic susceptibility measurements for (2.5) reveal more complex magnetic properties with the presence of ferromagnetic exchange between the central dimeric pair of copper atoms and weak antiferromagnetic exchange between the outer pairs of copper atoms. The Schiff-base bis-imine ligand (L2, 2.7) was found to be highly reactive; single crystals grown from dry methanol afforded compound (2.14) for which two methanol molecules had added across the imine double bond. The susceptibility of this ligand to nucleophilic attack at its imine functionality assisted via chelation to Lewis acidic metal ions adds an interesting dimension to its coordination chemistry. In this respect, a Co(II) quaterpyridine-type complex was prepared via a one-pot transformation of ligand L2 in the presence of a Lewis acidic metal salt. The rearranged complex was characterized by X-ray crystallography and a reaction mechanism for its formation has been proposed. Three additional rearranged complexes (2.13), (2.17) and (2.19) were also isolated when ligand (L2, 2.7) was reacted with transition metal ions. The molecular structures of all three complexes have been determined by X-ray crystallography. The second class of compounds that are reported in this thesis, are the two diacetyl pyridine derivatives, 4-pyridyl-2,6-diacetylpyridine (5.5) and 2,2'-6,6'-tetraacetyl-4,4'-bipyridine (5.15). Both of these compounds have been designed as intermediates for the metal templated assembly of a Schiff-base N3O2 macrocycle. From compound (5.15), a covalently tethered dimeric Mn(II) macrocyclic compound of general formula {[Mn^C^XJCl-FkO^Cl-lO.SFbO (5.16) was prepared and characterized. The X-ray analysis of (5.16) reveals that the two manganese ions assume a pentagonal-bipyramidal geometry with the macrocycle occupying the pentagonal plane and the axial positions being filled by a halide ion and a H2O molecule. Magnetic susceptibility data reveal the occurrence of antiferromagnetic interactions between covalently tethered Mn(II)-Mn(II) dimeric units. Following this methodology a Co(II) analogue (5.17) has also been prepared which is isostructural with (5.16).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although it is generally accepted that Rydberg orbitals are very large and diffuse, and that electron promotion to a Rydberg orbital is not too different from ionization of the molecule, analysis of the two types of transitions proves otherwise. The photoelectron spectrum of the 2B2 (n) ion has very little vibrational structure attached to the origin band; on the other hand, several of the Rydberg transitions which involve the promotion of the n(bZ) electron exhibit a great deal of vibrational activity. In particular, the members of the n=3 Rydberg\ series interact with and perturb each other through pseudo-Jahn-Teller vibronic coupling. The vacuum ultraviolet spectrum contains a number of features which are difficult to explain, and two unusually sharp bands can only be identified as representing some form of electron promotion in formaldehyde.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal decomposition of 2,3-di~ethy l - J-hydr operox y- 1 - butene , p r epared f rol") singl e t oxygen, has been studied i n three solvents over the tempe r a ture r ange from 1500e to l o00e and t!1e i 111 t ial ~oncentrfttl nn r Ange from O. 01 M to 0.2 M. Analys i s of the kine tic data ind ica te s i nduced homolysis as the n ost probRble mode of d e composition, g iving rise to a 3/2 f S order dependence upon hy d.roperoxide concent :r8.tl on . Experimental activation e nergies for the decomposition were f ound to be between 29.5 kcsl./raole and 30.0 k cal./mole .• \,iith log A factors between 11 . 3 and 12.3. Product studies were conducted in R variety of solvents a s well as in the pr esence of a variety of free r adical initiators . Investigation of the kinetic ch a in length indicated a chain length of about fifty. A degenerat i ve chain branching mechanism 1s proposed which predicts the multi t ude of products which Rre observed e xperimentally as well as giving activation energies and log A factors si~il a r to those found experimentally .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The one-electron reduced local energy function, t ~ , is introduced and has the property < tL)=(~>. It is suggested that the accuracy of SL reflects the local accuracy of an approximate wavefunction. We establish that <~~>~ <~2,> and present a bound formula, E~ , which is such that where Ew is Weinstein's lower bound formula to the ground state. The nature of the bound is not guaranteed but for sufficiently accurate wavefunctions it will yield a lower bound. ,-+ 1'S I I Applications to X LW Hz. and ne are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1-(0- and m-Ohlorobenzoyl)isoquinolines have been synthesized by two routes involving Reissert compounds. One route involves condensation of 2-benzoyl-l,2-dihydroisoquinaldonitrile with the appropriate chlorobenzaldehyde and the second involves rearrangement of the appropriate Z-(chlorobenzoyl)-l,Z-dihydroisoquinaldonitrile under basic conditions. The action of potassamide in anhydrous liquid ammonia on both ketones gave unexpectedly N-(l-isoquinolyl)benzamide (67) as the major product and the use of dibenzo-18-crown-6-ether 98% substantially improved the yd..e.ld in the case of l-chloroketone. This amide (67) exhibits unusual hydrogen bonding. 1-(o-chlorobenzoyl)-6,7-dimethoxyisoquinoline (79) was prepared in very s,amll quantities by the route involving condensation of 2-benzoyll, Z-dihydro-6,7-dimethoxyisoquinaldonitrile with o-chlorobenzaldehyde. The poor yields are due to the instability of the anion of 2-benzoyl1, Z-dihydro-6,7-dimethoxyisoquinaldonitrile. Attempted preparation of the ketone (79) by rearrangement of 2-(o-chlorobenzoyl)-l,2-dihydro6,7- dimethoxyisoquinaldonitrile under basic conditions yielded the start~ng material (Reissert compound) and 6,7-dimethoxyisoquinoline. The action of potassamide in anhydrous liquid ammonia on l-(o-bromo-4,5-dimethoxybenzoyl)isoquinoline (85), which was prepared by the route involving the condensation of 2-benzoyl-l,4-dihydroisoquinaldonitrile with o-bromo-4,5-dimethoxybenzaldehyde, gave two products, which have not yet been identified. The ketone (85) and its precursors are interest~ng in that their 20 eV and 70 eV mass spectra do not show molecular ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work described in this thesis has been divided into seven sections. The first section involves the preparation of N'-acyl-N'-arylN- benzothiohydrazides by the acylation of N'-aryl-N-benzothiohydrazides and is followed by a brief discussion of their possible conformation in solution. The second section deals with the preparation of 1,3,4-thiadiazolium salts by the action of perchloric acid/acetic anhydride on N'-acylN'- aryl-N-benzothiohydrazides and also by the reaction of N'-arylN- benzothiohydrazides with nitriles in an acidic medium. The preparation of 2-methylthio-I,3,4-thiadiazolium methosulfate by methylating the corresponding thione is also described. The third section deals with the reaction of 2-phenyl- and 2-methyl-I,3,4-thiadiazolium salts with alcohols in the presence of base. The stability and spectra of these compounds are discussed. Treatment of the 2-methyl-I,3,4-thiadiazolium salt with base was found to give rise to a dimeric anhydrobase and evidence supporting its structure is given. The anhydrobase could be trapped by a variety of acylating and thioacylating agents before dimerization occurred. In the fourth section, the reaction of N'-acyl-N'-aryl-N-benzothiohydrazides with a variety of acid anhydrides is described. These compounds were found to be identical with those obtained by acylating the anhydrobase. The mass spectral fragmentation of these compounds is described and the anomolous product obtained upon thiobenzoylation of 3-methyl-l-phenyl-pyrazal-5-one is also discussed. The fifth section deals with thioacyl derivatives of the anhydrobase which were prepared by the action of phosphorus pentasulfide upon the oxygen analogues and also obtained as the major product of the reaction of thioacetic acid with compounds related to N'-aryl-N-benzothiohydrazides. The mass spectra and p.m.r. spectra of these compounds are discussed. In the sixth section, the reaction of the 2-methylthio-l,3,4- thiadiazolium salt with active methylene compounds to give acyl and diacyl derivatives of the anhydrobase is described. Some aspects of these compounds are discussed. The seventh section describes the synthesis of ncyanine~' type dyes incorporating the l,3,4-thiadiazole ring and their spectra are briefly discussed.