933 resultados para DIMENSIONALLY STABLE ANODES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twenty ice cores drilled in medium to high accumulation areas of the Greenland ice sheet have been used to extract seasonally resolved stable isotope records. Relationships between the seasonal stable isotope data and Greenland and Icelandic temperatures as well as atmospheric flow are investigated for the past 150-200 years. The winter season stable isotope data are found to be influenced by the North Atlantic Oscillation (NAO) and very closely related to SW Greenland temperatures. The linear correlation between the first principal component of the winter season stable isotope data and Greenland winter temperatures is 0.71 for seasonally resolved data and 0.83 for decadally filtered data. The summer season stable isotope data display higher correlations with Stykkisholmur summer temperatures and North Atlantic SST conditions than with SW Greenland temperatures. The linear correlation between Stykkisholmur summer temperatures and the first principal component of the summer season stable isotope data is 0.56, increasing to 0.66 for decadally filtered data. Winter season stable isotope data from ice core records that reach more than 1400 years back in time suggest that the warm period that began in the 1920s raised southern Greenland temperatures to the same level as those that prevailed during the warmest intervals of the Medieval Warm Period some 900-1300 years ago. This observation is supported by a southern Greenland ice core borehole temperature inversion. As Greenland borehole temperature inversions are found to correspond better with winter stable isotope data than with summer or annual average stable isotope data it is suggested that a strong local Greenland temperature signal can be extracted from the winter stable isotope data even on centennial to millennial time scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petrographic descriptions and stable oxygen and carbon isotope compositions of microsamples of Campanian-age sediment gravity-flow deposits from Northeast Providence Channel, Bahamas, indicate deep-marine cementation of shallow-marine skeletal grains that were transported to the channel during the Late Cretaceous. Shallow-marine components are represented by mollusks, especially rudists, and shallow-water benthic foraminifers as well as sparse echinoderm and algal grains. The sole evidence of diagenesis in shallow-marine environments consists of micrite envelopes around skeletal grains. Shallow-marine skeletal grains have mean stable isotope values of -3.1 per mil d18O and +2.6 per mil d13C. The d18O values are consistent with precipitation in equilibrium with warm (20°-30°C), shallow-marine water. Deep-marine components are represented by equant calcite spar cements and rip-up clasts of slope sediments. Spar cements, exhibiting hexagonal morphology with scalenohedral terminations, most commonly occur as thin isopachous linings in the abundant porosity. Deep-marine cements have mean stable isotope values of - 1.1 per mil d18O and +2.7 per mil d13C. Deep-marine cements are 18O-enriched relative to shallow-marine skeletal grains, consistent with precipitation in equilibrium with colder (10°-20°C), deep-marine waters. The cement .source during lithification appears to have been dissolution of aragonite and high-magnesium calcite skeletal grains, which made up part of the transported sediment. Interbedded periplatform ooze remains uncemented, or poorly cemented, probably because of lower permeability. Equant spar cements that occur in gravity-flow deposits recovered from Hole 634A have stable isotope compositions similar to spars in Lower and mid-Cretaceous shallow-water limestones exposed on the Bahama Escarpment, to Campanian-Paleocene deep-marine hardgrounds recovered during DSDP Leg 15 in the Caribbean, and to spars in Aptian-Albian talus deposits at the base of the Campeche Escarpment recovered during DSDP Leg 77.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earth's climate underwent a fundamental change between 1250 and 700 thousand years ago, the Mid-Pleistocene Transition (MPT), when the dominant periodicity of climate cycles changed from 41,000 to 100,000 years in the absence of significant change in orbital forcing. Over this time, an increase occurred in the amplitude of change of deep ocean foraminiferal oxygen isotopic ratios, traditionally interpreted as defining the main rhythm of ice ages although containing large effects of changes in deep-ocean temperature. We have separated the effects of decreasing temperature and increasing global ice volume on oxygen isotope ratios. Our results suggest that the MPT was initiated by an abrupt increase in Antarctic ice volume at 900 ka. We see no evidence of a pattern of gradual cooling but near-freezing temperatures occur at every glacial maximum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents chlorine stable isotope compositions (delta37Cl) of sediment pore waters collected by squeezing sediment cores from the sediment-basement interface along an East-West transect through the eastern flank of the Juan de Fuca Ridge (ODP Leg 168). These "near basement fluids" (NBF) are generally thought to be representative of low-temperature fluids circulating in the off-axis basaltic crust. The delta37Cl value of the fluid directly sampled from a flow at the base of Site 1026 (WSTP1026) is also reported. NBF display delta37Cl values between -2.09? and -0.12? relative to the Standard Mean Ocean Chloride (SMOC defined as 0?) and small variations in chlorinity (~4%). These data contrast with the homogeneity of delta37Cl values associated with highly variable chlorinities observed in high-temperature on-axis fluids [Bonifacie et al., 2005, doi:10.1016/j.chemgeo.2005.06.008]. The NBF delta37Cl values show a general decreasing trend with distance from the ridge-axis except for two fluids. When plotted against delta18O values, the delta37Cl of the NBF show two different trends. This paper discusses the possible contributions on NBF delta37Cl values of fluid-mixing, water-rock interactions and transport processes (diffusion, ion membrane filtration) that can occur in the igneous basement. However, as none of these processes can fully explain the observed delta37Cl variations, the potential effect of the sediment cover is also investigated. At site 1026, the interstitial pore fluid displays a delta37Cl signature significantly lower than that of the fluid discharge sample (-1.90? and -0.28?, respectively). This difference, demonstrated here cannot be an artifact of the sampling method, rather indicates the influence of the sediment cover on NBF delta37Cl values. The potential contributions of physical processes associated with transport/compaction (e.g., diffusion, ion membrane filtration, adsorption, ion exchange) on NBF delta37Cl values are qualitatively discussed here but require additional studies for further insights. However, this study indicates that "near basement fluids" (NBF) are not, at least for Cl isotopic compositions, necessarily as representative of fluids circulating in the basaltic crust as initially thought. These results add new constraints on Cl geodynamics and show that Cl-isotopes fractionate during low-temperature circulation of fluids in off-axis and off-margin flow contexts, but not to the extent observed for active margins. Fluids circulating at low-temperature in the magmatic and/or the sedimentary part of the oceanic crust might have played a major role on the delta37Cl evolution of seawater over geologic time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

here is controversy over the role of marine methane hydrates in atmospheric methane concentrations and climate change during the last glacial period. In this study of two sediment cores from the southeast Bering Sea (700 m and 1467 m water depth), we identify multiple episodes during the last glacial period of intense methane flux reaching the seafloor. Within the uncertainty of the radiocarbon age model, the episodes are contemporaneous in the two cores and have similar timing and duration as Dansgaard-Oeschger events. The episodes are marked by horizons of sediment containing 13C-depleted authigenic carbonate minerals; 13C-depleted archaeal and bacterial lipids, which resemble those found in ANME-1 type anaerobic methane oxidizing microbial consortia; and changes in the abundance and species distribution of benthic foraminifera. The similar timing and isotopic composition of the authigenic carbonates in the two cores is consistent with a region-wide increase in the upward flux of methane bearing fluids. This study is the first observation outside Santa Barbara Basin of pervasive, repeated methane flux in glacial sediments. However, contrary to the "Clathrate Gun Hypothesis" (Kennett et al., 2003), these coring sites are too deep for methane hydrate destabilization to be the cause, implying that a much larger part of the ocean's sedimentary methane may participate in climate or carbon cycle feedback at millennial timescales. We speculate that pulses of methane in these opal-rich sediments could be caused by the sudden release of overpressure in pore fluids that builds up gradually with silica diagenesis. The release could be triggered by seismic shaking on the Aleutian subduction zone caused by hydrostatic pressure increase associated with sea level rise at the start of interstadials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instrumental climate data are limited in length and only available with low spatial coverage before the middle of the 20th century. This is too short to reliably determine and interpret decadal and longer scale climate variability and to understand the underlying mechanisms with sufficient accuracy. A proper knowledge of past variability of the climate system is needed to assess the anthropogenic impact on climate and ecosystems, and also important with regard to long-range climate forecasting. Highly-resolved records of past climate variations that extend beyond pre-industrial times can significantly help to understand long-term climate changes and trends. Indirect information on past environmental and climatic conditions can be deduced from climate-sensitive proxies. Large colonies of massive growing tropical reef corals have been proven to sensitively monitor changes in ambient seawater. Rapid skeletal growth, typically ranging between several millimeters to centimeters per year, allows the development of proxy records at sub-seasonal resolution. Stable oxygen isotopic composition and trace elemental ratios incorporated in the aragonitic coral skeleton can reveal a detailed history of past environmental conditions, e.g., sea surface temperature (SST). In general, coral-based reconstructions from the tropical Atlantic region have lagged behind the extensive work published using coral records from the Indian and Pacific Oceans. Difficulties in the analysis of previously utilized coral archives from the Atlantic, typically corals of the genera Montastrea and Siderastrea, have so far exacerbated the production of long-term high-resolution proxy records. The objective of this study is the evaluation of massive fast-growing corals of the species Diploria strigosa as a new marine archive for climate reconstructions from the tropical Atlantic region. For this purpose, coral records from two study sites in the eastern Caribbean Sea (Guadeloupe, Lesser Antilles; and Archipelago Los Roques, Venezuela) were examined. At Guadeloupe, a century-long monthly resolved multi-proxy coral record was generated. Results present the first d18O (Sr/Ca)-SST calibration equations for the Atlantic braincoral Diploria strigosa, that are robust and consistent with previously published values using other coral species from different regions. Both proxies reflect local variability of SST on a sub-seasonal scale, which is a precondition for studying seasonally phase-locked climate variations, as well as track variability on a larger spatial scale (i.e., in the Caribbean and tropical North Atlantic). Coral Sr/Ca reliably records local annual to interannual temperature variations and is higher correlated to in-situ air temperature than to grid-SST. The warming calculated from coral Sr/Ca is concurrent with the strong surface temperature increase at the study site during the past decades. Proxy data show a close relationship to major climate signals from the tropical Pacific and North Atlantic (the El Niño Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO)) affecting the seasonal cycle of SST in the North Tropical Atlantic (NTA). Coral oxygen isotopes are also influenced by seawater d18O (d18Osw) which is linked to the hydrological cycle, and capture large-scale climate variability in the NTA region better than Sr/Ca. Results from a quantitative comparison between extreme events in the two most prominent modes of external forcing, namely the ENSO and NAO, and respective events recorded in seasonal coral d18O imply that SST variability at the study site is highly linked to Pacific and North Atlantic variability, by this means supporting the assumptions of observational- and model-based studies which suggest a strong impact of ENSO and NAO forcings onto the NTA region through a modulation of trade wind strength in winter. Results from different spectral analysis tools suggest that interannual climate variability recorded by the coral proxies is II largely dictated by Pacific ENSO forcing, whereas at decadal and longer timescales the influence of the NAO is dominan. tThe Archipelago Los Roques is situated in the southeastern Caribbean Sea, north of the Venezuelan coast. Year-to-year variations in monthly resolved coral d18O of a nearcentury- long Diploria strigosa record are significantly correlated with SST and show pronounced multidecadal variations. About half of the variance in coral d18O can be explained by variations in seawater d18O, which can be estimated by calculating the d18Oresidual via subtracting the SST component from measured coral d18O. The d18Oresidual and a regional precipitation index are highly correlated at low frequencies, suggesting that d18Osw variations are primarily atmospheric-driven. Warmer SSTs at Los Roques broadly coincide with higher precipitation in the southeastern Caribbean at multidecadal time scales, effectively strengthening the climate signal in the coral d18O record. The Los Roques coral d18O record displays a strong and statistically significant relationship to different indices of hurricane activity during the peak of the Atlantic hurricane season in boreal summer and is a particularly good indicator of decadal-multidecadal swings in the latter indices. In general, the detection of long-term changes and trends in Atlantic hurricane activity is hampered due to the limited length of the reliable instrumental record and the known inhomogeneity in the observational databases which result from changes in observing practice and technology over the years. The results suggest that coral-derived proxy data from Los Roques can be used to infer changes in past hurricane activity on timescales that extend well beyond the reliable record. In addition, the coral record exhibits a clear negative trend superimposed on the decadal to multidecadal cycles, indicating a significant warming and freshening of surface waters in the genesis region of tropical cyclones during the past decades. The presented coral d18O time series provides the first and, so far, longest continuous coral-based record of hurricane activity. It appears that the combination of both signals (SST and d18Osw) in coral d18O leads to an amplification of large-scale climate signals in the record, and makes coral d18O even a better proxy for hurricane activity than SST alone. Atlantic hurricane activity naturally exhibits strong multidecadal variations that are associated with the Atlantic Multidecadal Oscillation (AMO), the major mode of lowfrequency variability in the North Atlantic Ocean. However, the mechanisms underlying this multidecadal variability remain controversial, primarily because of the limited instrumental record. The Los Roques coral d18O displays strong multidecadal variability with a period of approximately 60 years that is closely related to the AMO, making the Archipelago Los Roques a very sensitive location for studying low-frequency climate variability in the Atlantic Ocean. In summary, the coral records presented in this thesis capture different key climate variables in the north tropical Atlantic region very well, indicating that fast-growing Diploria strigosa corals represent a promising marine archive for further proxy-based reconstructions of past climate variability on a range of time scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Past water column stratification can be assessed through comparison of the d18O of different planktonic foraminiferal species. The underlying assumption is that different species form their shells simultaneously, but at different depths in the water column. We evaluate this assumption using a sediment trap time-series of Neogloboquadrina pachyderma (s) and Globigerina bulloides from the NW North Atlantic. We determined fluxes, d18O and d13C of shells from two size fractions to assess size-related effects on shell chemistry and to better constrain the underlying causes of isotopic differences between foraminifera in deep-sea sediments. Our data indicate that in the subpolar North Atlantic differences in the seasonality of the shell flux, and not in depth habitat or test size, determine the interspecies Delta d18O. N. pachyderma (s) preferentially forms from early spring to late summer, whereas the flux ofG. bulloides peaks later in the season and is sustained until autumn. Likewise, seasonality influences large and small specimens differently, with large shells settling earlier in the season. The similarity of the seasonal d18O patterns between the two species indicates that they calcify in an overlapping depth zone close to the surface. However, their d13C patterns are markedly different (>1 per mil). Both species have a seasonally variable offset from d13CDIC that appears to be governed primarily by temperature, with larger offsets associated with higher temperatures. The variable offset from d13CDIC implies that seasonality of the flux affects the fossil d13C signal, which has implications for reconstruction of the past oceanic carbon cycle.