992 resultados para Cytoplasmic organelles
Resumo:
Mesenchymal stem cells (MSCs) secrete a variety of cytokines and growth factors in addition to self-renewal and multiple forms of differentiation. Some of these secreted bioactive factors could improve meiotic maturation in vitro and subsequent embryo developmental potential. The aim of the present study was to determine whether in vitro maturation (IVM) of mouse oocyte with or without cumulus cells could be improved by contact with conditioned medium (CM) of MSCs as well as the efficiency of CM to support follicular growth and oocyte maturation in the ovarian organ of mice cultured on soft agar. The developmental potential of matured oocyte was assessed by blastocyst formation after in vitro fertilization (IVF). Germinal vesicle stage oocytes with or without cumulus cells were subjected to IVM in either CM, Dulbecco's modified Eagle's medium (DMEM), α-minimum essential medium (α-MEM) or human tubal fluid (HTF). Approximately 120 oocytes were studied for each medium. CM produced a higher maturation rate (91.2%) than DMEM (54.7%), α-MEM (63.5%) and HTF (27.1%). Moreover, CM improved embryo development to blastocyst stage significantly more than DMEM and HTF (85 vs 7% and 41.7%, respectively) but there was no significant difference compared with α-MEM (85 vs 80.3%). The behavior of cortical granules of IVM oocytes cultured in CM revealed cytoplasmic maturation. Moreover, CM also supported preantral follicles growth well in organotypic culture on soft agar resulting in the maturation of 60% of them to developmentally competent oocytes. The production of estrogen progressively increased approximately 1-fold every other day during organ culture, while a dramatic 10-fold increase in progesterone was observed 17 h after human chorionic gonadotropin stimulus at the end of culture. Thus, CM is an effective medium for preantral follicle growth, oocyte maturation, and sequential embryo development.
Resumo:
Streptococcus mutans membrane-bound P- and F-type ATPases are responsible for H+ extrusion from the cytoplasm thus keeping intracellular pH appropriate for cell metabolism. Toluene-permeabilized bacterial cells have long been used to study total membrane-bound ATPase activity, and to compare the properties of ATPase in situ with those in membrane-rich fractions. The aim of the present research was to determine if toluene permeabilization can significantly modify the activity of membrane-bound ATPase of both F-type and P-type. ATPase activity was assayed discontinuously by measuring phosphate release from ATP as substrate. Treatment of S. mutans membrane fractions with toluene reduced total ATPase activity by approximately 80% and did not allow differentiation between F- and P-type ATPase activities by use of the standard inhibitors vanadate (3 µM) and oligomycin (4 µg/mL). Transmission electron microscopy shows that, after S. mutans cells permeabilization with toluene, bacterial cell wall and plasma membrane are severely injured, causing cytoplasmic leakage. As a consequence, loss of cell viability and disruption of H+ extrusion were observed. These data suggest that treatment of S. mutans with toluene is an efficient method for cell disruption, but care should be taken in the interpretation of ATPase activity when toluene-permeabilized cells are used, because results may not reflect the real P- and F-type ATPase activities present in intact cell membranes. The mild conditions used for the preparation of membrane fractions may be more suitable to study specific ATPase activity in the presence of biological agents, since this method preserves ATPase selectivity for standard inhibitors.
Resumo:
Calcium (Ca2+) is a versatile second messenger that regulates a wide range of cellular functions. Although it is not established how a single second messenger coordinates diverse effects within a cell, there is increasing evidence that the spatial patterns of Ca2+ signals may determine their specificity. Ca2+ signaling patterns can vary in different regions of the cell and Ca2+ signals in nuclear and cytoplasmic compartments have been reported to occur independently. No general paradigm has been established yet to explain whether, how, or when Ca2+ signals are initiated within the nucleus or their function. Here we highlight that receptor tyrosine kinases rapidly translocate to the nucleus. Ca2+ signals that are induced by growth factors result from phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate formation within the nucleus rather than within the cytoplasm. This novel signaling mechanism may be responsible for growth factor effects on cell proliferation.
Resumo:
Vacuolar H+-ATPase is a large multi-subunit protein that mediates ATP-driven vectorial H+ transport across the membranes. It is widely distributed and present in virtually all eukaryotic cells in intracellular membranes or in the plasma membrane of specialized cells. In subcellular organelles, ATPase is responsible for the acidification of the vesicular interior, which requires an intraorganellar acidic pH to maintain optimal enzyme activity. Control of vacuolar H+-ATPase depends on the potential difference across the membrane in which the proton ATPase is inserted. Since the transport performed by H+-ATPase is electrogenic, translocation of H+-ions across the membranes by the pump creates a lumen-positive voltage in the absence of a neutralizing current, generating an electrochemical potential gradient that limits the activity of H+-ATPase. In many intracellular organelles and cell plasma membranes, this potential difference established by the ATPase gradient is normally dissipated by a parallel and passive Cl- movement, which provides an electric shunt compensating for the positive charge transferred by the pump. The underlying mechanisms for the differences in the requirement for chloride by different tissues have not yet been adequately identified, and there is still some controversy as to the molecular identity of the associated Cl--conducting proteins. Several candidates have been identified: the ClC family members, which may or may not mediate nCl-/H+ exchange, and the cystic fibrosis transmembrane conductance regulator. In this review, we discuss some tissues where the association between H+-ATPase and chloride channels has been demonstrated and plays a relevant physiologic role.
Resumo:
Crude extracts of house dust mites are used clinically for diagnosis and immunotherapy of allergic diseases, including bronchial asthma, perennial rhinitis, and atopic dermatitis. However, crude extracts are complexes with non-allergenic antigens and lack effective concentrations of important allergens, resulting in several side effects. Dermatophagoides farinae (Hughes; Acari: Pyroglyphidae) is one of the predominant sources of dust mite allergens, which has more than 30 groups of allergen. The cDNA coding for the group 5 allergen of D. farinae from China was cloned, sequenced and expressed. According to alignment using the VECTOR NTI 9.0 software, there were eight mismatched nucleotides in five cDNA clones resulting in seven incompatible amino acid residues, suggesting that the Der f 5 allergen might have sequence polymorphism. Bioinformatics analysis revealed that the matured Der f 5 allergen has a molecular mass of 13604.03 Da, a theoretical pI of 5.43 and is probably hydrophobic and cytoplasmic. Similarities in amino acid sequences between Der f 5 and allergens of other domestic mite species, viz. Der p 5, Blo t 5, Sui m 5, and Lep d 5, were 79, 48, 53, and 37%, respectively. Phylogenetic analysis indicated that Der f 5 and Der p 5 clustered together. Blo t 5 and Ale o 5 also clustered together, although Blomia tropicalis and Aleuroglyphus ovatus belong to different mite families, viz. Echimyopodidae and Acaridae, respectively.
Resumo:
Our objective was to investigate the protein level of phosphorylated N-methyl-D-aspartate (NMDA) receptor-1 at serine 897 (pNR1 S897) in both NMDA-induced brain damage and hypoxic-ischemic brain damage (HIBD), and to obtain further evidence that HIBD in the cortex is related to NMDA toxicity due to a change of the pNR1 S897 protein level. At postnatal day 7, male and female Sprague Dawley rats (13.12 ± 0.34 g) were randomly divided into normal control, phosphate-buffered saline (PBS) cerebral microinjection, HIBD, and NMDA cerebral microinjection groups. Immunofluorescence and Western blot (N = 10 rats per group) were used to examine the protein level of pNR1 S897. Immunofluorescence showed that control and PBS groups exhibited significant neuronal cytoplasmic staining for pNR1 S897 in the cortex. Both HIBD and NMDA-induced brain damage markedly decreased pNR1 S897 staining in the ipsilateral cortex, but not in the contralateral cortex. Western blot analysis showed that at 2 and 24 h after HIBD, the protein level of pNR1 S897 was not affected in the contralateral cortex (P > 0.05), whereas it was reduced in the ipsilateral cortex (P < 0.05). At 2 h after NMDA injection, the protein level of pNR1 S897 in the contralateral cortex was also not affected (P > 0.05). The levels in the ipsilateral cortex were decreased, but the change was not significant (P > 0.05). The similar reduction in the protein level of pNR1 S897 following both HIBD and NMDA-induced brain damage suggests that HIBD is to some extent related to NMDA toxicity possibly through NR1 phosphorylation of serine 897.
Resumo:
Myosin Va functions as a processive, actin-based motor molecule highly enriched in the nervous system, which transports and/or tethers organelles, vesicles, and mRNA and protein translation machinery. Mutation of myosin Va leads to Griscelli disease that is associated with severe neurological deficits and a short life span. Despite playing a critical role in development, the expression of myosin Va in the central nervous system throughout the human life span has not been reported. To address this issue, the cerebellar expression of myosin Va from newborns to elderly humans was studied by immunohistochemistry using an affinity-purified anti-myosin Va antibody. Myosin Va was expressed at all ages from the 10th postnatal day to the 98th year of life, in molecular, Purkinje and granular cerebellar layers. Cerebellar myosin Va expression did not differ essentially in localization or intensity from childhood to old age, except during the postnatal developmental period. Structures resembling granules and climbing fibers in Purkinje cells were deeply stained. In dentate neurons, long processes were deeply stained by anti-myosin Va, as were punctate nuclear structures. During the first postnatal year, myosin Va was differentially expressed in the external granular layer (EGL). In the EGL, proliferating prospective granule cells were not stained by anti-myosin Va antibody. In contrast, premigratory granule cells in the EGL stained moderately. Granule cells exhibiting a migratory profile in the molecular layer were also moderately stained. In conclusion, neuronal myosin Va is developmentally regulated, and appears to be required for cerebellar function from early postnatal life to senescence.
Resumo:
Frogs have been used as an alternative model to study pain mechanisms. Since we did not find any reports on the effects of sciatic nerve transection (SNT) on the ultrastructure and pattern of metabolic substances in frog dorsal root ganglion (DRG) cells, in the present study, 18 adult male frogs (Rana catesbeiana) were divided into three experimental groups: naive (frogs not subjected to surgical manipulation), sham (frogs in which all surgical procedures to expose the sciatic nerve were used except transection of the nerve), and SNT (frogs in which the sciatic nerve was exposed and transected). After 3 days, the bilateral DRG of the sciatic nerve was collected and used for transmission electron microscopy. Immunohistochemistry was used to detect reactivity for glucose transporter (Glut) types 1 and 3, tyrosine hydroxylase, serotonin and c-Fos, as well as nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase). SNT induced more mitochondria with vacuolation in neurons, satellite glial cells (SGCs) with more cytoplasmic extensions emerging from cell bodies, as well as more ribosomes, rough endoplasmic reticulum, intermediate filaments and mitochondria. c-Fos immunoreactivity was found in neuronal nuclei. More neurons and SGCs surrounded by tyrosine hydroxylase-like immunoreactivity were found. No change occurred in serotonin- and Glut1- and Glut3-like immunoreactivity. NADPH-diaphorase occurred in more neurons and SGCs. No sign of SGC proliferation was observed. Since the changes of frog DRG in response to nerve injury are similar to those of mammals, frogs should be a valid experimental model for the study of the effects of SNT, a condition that still has many unanswered questions.
Resumo:
Dye exclusion tests are used to determine the number of live and dead cells. These assays are based on the principle that intact plasma membranes in live cells exclude specific dyes, whereas dead cells do not. Although widely used, the trypan blue (TB) exclusion assay has limitations. The dye can be incorporated by live cells after a short exposure time, and personal reliability, related to the expertise of the analyst, can affect the results. We propose an alternative assay for evaluating cell viability that combines the TB exclusion test and the high sensitivity of the flow cytometry technique. Previous studies have demonstrated the ability of TB to emit fluorescence when complexed with proteins. According to our results, TB/bovine serum albumin and TB/cytoplasmic protein complexes emit fluorescence at 660 nm, which is detectable by flow cytometry using a 650-nm low-pass band filter. TB at 0.002% (w/v) was defined as the optimum concentration for distinguishing unstained living cells from fluorescent dead cells, and fluorescence emission was stable for 30 min after cell treatment. Although previous studies have shown that TB promotes green fluorescence quenching, TB at 0.002% did not interfere with green fluorescence in human live T-cells stained with anti-CD3/fluorescein isothiocyanate (FITC) monoclonal antibody. We observed a high correlation between the percentage of propidium iodide+CD3/FITC+ and TB+CD3/FITC+ cells, as well as similar double-stained cell profiles in flow cytometry dot-plot graphs. Taken together, the results indicate that a TB exclusion assay by flow cytometry can be employed as an alternative tool for quick and reliable cell viability analysis.
Resumo:
Stimulation by a number of conditions, including infection, cytokines, mechanical injury, and hypoxia, can upregulate inducible nitric oxide synthase (iNOS) in hepatocytes. We observed that exposure to hypergravity significantly upregulated the transcription of the hepatic iNOS gene. The aim of this study was to confirm our preliminary data, and to further investigate the distribution of the iNOS protein in the livers of mice exposed to hypergravity. ICR mice were exposed to +3 Gz for 1 h. We investigated the time course of change in the iNOS expression. Hepatic iNOS mRNA expression progressively increased in centrifuged mice from 0 to 12 h, and then decreased rapidly by 18 h. iNOS mRNA levels in the livers of centrifuged mice was significantly higher at 3, 6, and 12 h than in uncentrifuged control mice. The pattern of iNOS protein expression paralleled that of the mRNA expression. At 0 and 1 h, weak cytoplasmic iNOS immunoreactivity was found in some hepatocytes surrounding terminal hepatic venules. It was noted that at 6 h there was an increase in the number of perivenular hepatocytes with moderate to strong cytoplasmic immunoreactivity. The number of iNOS-positive hepatocytes was maximally increased at 12 h. The majority of positively stained cells showed a strong intensity of iNOS expression. The expression levels of iNOS mRNA and protein were significantly increased in the livers of mice exposed to hypergravity. These results suggest that exposure to hypergravity significantly upregulates iNOS at both transcriptional and translational levels.
Resumo:
Levamisole has been increasingly used as an adulterant of cocaine in recent years, emerging as a public health challenge worldwide. Levamisole-associated toxicity manifests clinically as a systemic vasculitis, consisting of cutaneous, hematological, and renal lesions, among others. Purpura retiform, cutaneous necrosis, intravascular thrombosis, neutropenia, and less commonly crescentic nephritis have been described in association with anti-neutrophil cytoplasmic antibodies (ANCAs) and other autoantibodies. Here we report the case of a 49-year-old male who was a chronic cocaine user, and who presented spontaneous weight loss, arthralgia, and 3 weeks before admission purpuric skin lesions in the earlobes and in the anterior thighs. His laboratory tests on admission showed serum creatinine of 4.56 mg/dL, white blood count 3,800/μL, hemoglobin 7.3 g/dL, urinalysis with 51 white blood cells/μL and 960 red blood cells/μL, and urine protein-to-creatinine ratio 1.20. Serum ANCA testing was positive (>1:320), as well as serum anti-myeloperoxidase and anti-proteinase 3 antibodies. Urine toxicology screen was positive for cocaine and levamisole, with 62.8% of cocaine, 32.2% of levamisole, and 5% of an unidentified substance. Skin and renal biopsies were diagnostic for leukocytoclastic vasculitis and pauci-immune crescentic glomerulonephritis, respectively. The patient showed a good clinical response to cocaine abstinence, and use of corticosteroids and intravenous cyclophosphamide. Last serum creatinine was 1.97 mg/dL, white blood cell count 7,420/μL, and hemoglobin level 10.8 g/dL. In levamisole-induced systemic vasculitis, the early institution of cocaine abstinence, concomitant with the use of immunosuppressive drugs in severe cases, may prevent permanent end organ damage and associate with better clinical outcomes.
Resumo:
Roles of novel biomarkers was studied in progression of cutaneous squamous cell carcinoma (cSCC) as the most common metastatic skin cancer. The incidence of cSCC is increasing worldwide due to lifestyle changes such as recreational exposure to sunlight and the aging of the population. Because of an emerging need for molecular markers for the progression of cSCC, we set our goal to characterize three distinct novel markers overexpressed in cSCC cells. Our results identified overexpression of serpin peptidase inhibitor clade A member 1 (SerpinA1), EphB2 and absent in melanoma 2 (AIM2) in cSCC cell lines compared with normal human epidermal keratinocytes (NHEKs). Immunohistochemical analysis of SerpinA1, EphB2 and AIM2 revealed abundant tumor cell-specific expression of cytoplasmic SerpinA1 and AIM2 and cytoplasmic and membranous EphB2 in cSCC tumors in vivo. The staining intensity of SerpinA1, EphB2 and AIM2 was significantly stronger in cSCC as compared with carcinoma in situ (cSCCIS) and actinic keratosis (AK). Tumor cell-associated SerpinA1 and EphB2 was noted in chemically induced mouse skin SCC, and the staining intensity was stronger in mouse cSCCs than in untreated skin. AIM2 staining intensity was significantly more abundant in cSCC of organ transplant recipients (OTR) than in sporadic cSCC in vivo. EphB2 knockdown resulted in inhibition of migration in cSCC cells. In addition, knockdown of EphB2 and AIM2 was found to inhibit the proliferation and invasion of cSCC cells and to delay the growth and vascularization of cSCC xenografts in vivo. Altogether, these findings identify SerpinA1 as a novel biomarker for cSCC. In addition, characterization of the roles of EphB2 and AIM2 in the progression of cSCC was implicated them as possible therapeutic targets for the treatment of cSCC particularly in unresectable and metastatic tumors.
Conjugated linoleic acid supplementation: lipid content and hepatic histology in healthy Wistar rats
Resumo:
This work aimed to evaluate the effects of the consumption of two commercial conjugated linoleic acid (CLA) mixtures on lipid content and liver histology of healthy rats. The investigation was carried out using thirty rats divided into three groups: C (control), AE (AdvantEdge®CLA), and CO (CLA One®). The concentration of CLA was 2% of feed consumption, and the animals were supplemented daily for 42 days. The total lipid content of the liver was determined, and the histology of the organ was examined by Transmission Electronic Microscopy. The results of total liver lipid contents did not exhibit significant differences between the groups. With regard to hepatic histology, it was observed that although fat globules were visibly present in higher numbers and bigger size in the CLA groups, the organ histology was considered normal since both cytoplasm and organelles showed integrity. It was concluded that even though liver microscopic images indicated the presence of fat globules in the liver, from a statistical point of view, the supplementation for 42 days did not bring about lipid accumulation, nor did it alter hepatic histology.
Resumo:
Intermediate filaments are part of the cytoskeleton and nucleoskeleton; they provide cells with structure and have important roles in cell signalling. The IFs are a large protein family with more than 70 members; each tightly regulated and expressed in a cell type-specific manner. Although the IFs have been known and studied for decades, our knowledge about their specific functions is still limited, despite the fact that mutations in IF genes cause numerous severe human diseases. In this work, three IF proteins are examined more closely; the nuclear lamin A/C and the cytoplasmic nestin and vimentin. In particular the regulation of lamin A/C dynamics, the role of nestin in muscle and body homeostasis as well as the functions and evolutionary aspects of vimentin are investigated. Together this data highlights some less well understood functions of these IFs. We used mass-spectrometry to identify inter-phase specific phosphorylation sites on lamin A. With the use of genetically engineered lamin A protein in combination with high resolution microscopy and biochemical methods we discovered novel roles for this phosphorylation in regulation of lamin dynamics. More specifically, our data suggests that the phosphorylation of certain amino acids in lamin A determines the localization and dynamics of the protein. In addition, we present results demonstrating that lamin A regulates Cdk5-activity. In the second study we use mice lacking nestin to gain more knowledge of this seldom studied protein. Our results show that nestin is essential for muscle regeneration; mice lacking nestin recover more slowly from muscle injury and show signs of spontaneous muscle regeneration, indicating that their muscles are more sensitive to stresses and injury. The absence of nestin also leads to decreased over-all muscle mass and slower body growth. Furthermore, nestin has a role in controlling testicle homeostasis as nestin-/- male mice show a greater variation in testicle size. The common fruit fly Drosophila melanogaster lacks cytoplasmic IFs as most insects do. By creating a fly that expresses human vimentin we establish a new research platform for vimentin studies, as well as provide a new tool for the studies of IF evolution.
Resumo:
The regenerating urodele limb is a useful model system in which to study, in vivo, the controls of cell proliferation and differentiation. Techniques are available which enable one to experimentally manipulate mitogenic influences upon the blastema, as well the morphogenesis of the regenerating 11mb. Although classical regeneration studies have generated a wealth of knowledge concerning tissue interactions, little 1s known about the process at the level of gene expression. The aim of this project was to clone potentially developmentally regulated genes from a newt genomic library for use in future studies of gene expression during limb regeneration. We decided to clone the cytoskeletal actin gene for the following reasons: 1. its expression reflects the proliferative and differentiatlve states of cells in other systems 2. the high copy number of cytoplasmic actin pseudogenes in other vertebrates and the high degree of evolutionary sequence conservation among actin genes increased the chance of cloning one of the newt cytoplasmic actin genes. 3. Preliminary experiments indicated that a newt actin could probably be identified using an available chick ~-actln gene for a molecular probe. Two independent recombinant phage clones, containing actin homologous inserts, were isolated from a newt genomic library by hybridization with the chick actin probe. Restriction mapping identified actin homologous sequences within the newt DNA inserts which were subcloned into the plasmid pTZ19R. The recombinant plasmids were transformed into the Escherichia coli strain, DHsa. Detailed restriction maps were produced of the 5.7Kb and 3.1Kb newt DNA inserts in the plasmids, designated pTNAl and pTNA2. The short «1.3 Kb) length of the actin homologous sequence in pTNA2 indicated that it was possibly a reverse transcript pseudogene. Problems associated with molecular cloning of DNA sequences from N. viridescens are discussed with respect to the large genome size and abundant highly repetitive DNA sequences.