980 resultados para Current speed
Resumo:
High-speed semiconductor lasers are an integral part in the implemen- tation of high-bit-rate optical communications systems. They are com- pact, rugged, reliable, long-lived, and relatively inexpensive sources of coherent light. Due to the very low attenuation window that exists in the silica based optical fiber at 1.55 μm and the zero dispersion point at 1.3 μm, they have become the mainstay of optical fiber com- munication systems. For the fabrication of lasers with gratings such as, distributed bragg reflector or distributed feedback lasers, etching is the most critical step. Etching defines the lateral dimmensions of the structure which determines the performance of optoelectronic devices. In this thesis studies and experiments were carried out about the exist- ing etching processes for InP and a novel dry etching process was de- veloped. The newly developed process was based on Cl2/CH4/H2/Ar chemistry and resulted in very smooth surfaces and vertical side walls. With this process the grating definition was significantly improved as compared to other technological developments in the respective field. A surface defined grating definition approach is used in this thesis work which does not require any re-growth steps and makes the whole fabrication process simpler and cost effective. Moreover, this grating fabrication process is fully compatible with nano-imprint lithography and can be used for high throughput low-cost manufacturing. With usual etching techniques reported before it is not possible to etch very deep because of aspect ratio dependent etching phenomenon where with increasing etch depth the etch rate slows down resulting in non-vertical side walls and footing effects. Although with our de- veloped process quite vertical side walls were achieved but footing was still a problem. To overcome the challenges related to grating defini- tion and deep etching, a completely new three step gas chopping dry etching process was developed. This was the very first time that a time multiplexed etching process for an InP based material system was demonstrated. The developed gas chopping process showed extra ordinary results including high mask selectivity of 15, moderate etch- ing rate, very vertical side walls and a record high aspect ratio of 41. Both the developed etching processes are completely compatible with nano imprint lithography and can be used for low-cost high-throughput fabrication. A large number of broad area laser, ridge waveguide laser, distributed feedback laser, distributed bragg reflector laser and coupled cavity in- jection grating lasers were fabricated using the developed one step etch- ing process. Very extensive characterization was done to optimize all the important design and fabrication parameters. The devices devel- oped have shown excellent performance with a very high side mode suppression ratio of more than 52 dB, an output power of 17 mW per facet, high efficiency of 0.15 W/A, stable operation over temperature and injected currents and a threshold current as low as 30 mA for almost 1 mm long device. A record high modulation bandwidth of 15 GHz with electron-photon resonance and open eye diagrams for 10 Gbps data transmission were also shown.
Resumo:
Magnetic clouds are a class of interplanetary coronal mass ejections (CME) predominantly characterised by a smooth rotation in the magnetic field direction, indicative of a magnetic flux rope structure. Many magnetic clouds, however, also contain sharp discontinuities within the smoothly varying magnetic field, suggestive of narrow current sheets. In this study we present observations and modelling of magnetic clouds with strong current sheet signatures close to the centre of the apparent flux rope structure. Using an analytical magnetic flux rope model, we demonstrate how such current sheets can form as a result of a cloud’s kinematic propagation from the Sun to the Earth, without any external forces or influences. This model is shown to match observations of four particular magnetic clouds remarkably well. The model predicts that current sheet intensity increases for increasing CME angular extent and decreasing CME radial expansion speed. Assuming such current sheets facilitate magnetic reconnection, the process of current sheet formation could ultimately lead a single flux rope becoming fragmented into multiple flux ropes. This change in topology has consequences for magnetic clouds as barriers to energetic particle propagation.
Resumo:
Prediction of the solar wind conditions in near-Earth space, arising from both quasi-steady and transient structures, is essential for space weather forecasting. To achieve forecast lead times of a day or more, such predictions must be made on the basis of remote solar observations. A number of empirical prediction schemes have been proposed to forecast the transit time and speed of coronal mass ejections (CMEs) at 1 AU. However, the current lack of magnetic field measurements in the corona severely limits our ability to forecast the 1 AU magnetic field strengths resulting from interplanetary CMEs (ICMEs). In this study we investigate the relation between the characteristic magnetic field strengths and speeds of both magnetic cloud and noncloud ICMEs at 1 AU. Correlation between field and speed is found to be significant only in the sheath region ahead of magnetic clouds, not within the clouds themselves. The lack of such a relation in the sheaths ahead of noncloud ICMEs is consistent with such ICMEs being skimming encounters of magnetic clouds, though other explanations are also put forward. Linear fits to the radial speed profiles of ejecta reveal that faster-traveling ICMEs are also expanding more at 1 AU. We combine these empirical relations to form a prediction scheme for the magnetic field strength in the sheaths ahead of magnetic clouds and also suggest a method for predicting the radial speed profile through an ICME on the basis of upstream measurements.
Resumo:
We use geomagnetic activity data to study the rise and fall over the past century of the solar wind flow speed VSW, the interplanetary magnetic field strength B, and the open solar flux FS. Our estimates include allowance for the kinematic effect of longitudinal structure in the solar wind flow speed. As well as solar cycle variations, all three parameters show a long-term rise during the first half of the 20th century followed by peaks around 1955 and 1986 and then a recent decline. Cosmogenic isotope data reveal that this constitutes a grand maximum of solar activity which began in 1920, using the definition that such grand maxima are when 25-year averages of the heliospheric modulation potential exceeds 600 MV. Extrapolating the linear declines seen in all three parameters since 1985, yields predictions that the grand maximum will end in the years 2013, 2014, or 2027 using VSW, FS, or B, respectively. These estimates are consistent with predictions based on the probability distribution of the durations of past grand solar maxima seen in cosmogenic isotope data. The data contradict any suggestions of a floor to the open solar flux: we show that the solar minimum open solar flux, kinematically corrected to allow for the excess flux effect, has halved over the past two solar cycles.
Resumo:
A novel rotor velocity estimation scheme applicable to vector controlled induction motors has been described. The proposed method will evaluate rotor velocity, ωr, on-line, does not require any extra transducers or injection of any signals, nor does it employ complicated algorithms such as MRAS or Kalman filters. Furthermore, the new scheme will operate at all velocities including zero with very little error. The procedure employs motor model equations, however all differential and integral terms have been eliminated giving a very fast, low-cost, effective and practical alternative to the current available methods. Simulation results verify the operation of the scheme under ideal and PWM conditions.
Resumo:
The physical and empirical relationships used by microphysics schemes to control the rate at which vapor is transferred to ice crystals growing in supercooled clouds are compared with laboratory data to evaluate the realism of various model formulations. Ice crystal growth rates predicted from capacitance theory are compared with measurements from three independent laboratory studies. When the growth is diffusion- limited, the predicted growth rates are consistent with the measured values to within about 20% in 14 of the experiments analyzed, over the temperature range −2.5° to −22°C. Only two experiments showed significant disagreement with theory (growth rate overestimated by about 30%–40% at −3.7° and −10.6°C). Growth predictions using various ventilation factor parameterizations were also calculated and compared with supercooled wind tunnel data. It was found that neither of the standard parameterizations used for ventilation adequately described both needle and dendrite growth; however, by choosing habit-specific ventilation factors from previous numerical work it was possible to match the experimental data in both regimes. The relationships between crystal mass, capacitance, and fall velocity were investigated based on the laboratory data. It was found that for a given crystal size the capacitance was significantly overestimated by two of the microphysics schemes considered here, yet for a given crystal mass the growth rate was underestimated by those same schemes because of unrealistic mass/size assumptions. The fall speed for a given capacitance (controlling the residence time of a crystal in the supercooled layer relative to its effectiveness as a vapor sink, and the relative importance of ventilation effects) was found to be overpredicted by all the schemes in which fallout is permitted, implying that the modeled crystals reside for too short a time within the cloud layer and that the parameterized ventilation effect is too strong.
Resumo:
The current state of the art in the planning and coordination of autonomous vehicles is based upon the presence of speed lanes. In a traffic scenario where there is a large diversity between vehicles the removal of speed lanes can generate a significantly higher traffic bandwidth. Vehicle navigation in such unorganized traffic is considered. An evolutionary based trajectory planning technique has the advantages of making driving efficient and safe, however it also has to surpass the hurdle of computational cost. In this paper, we propose a real time genetic algorithm with Bezier curves for trajectory planning. The main contribution is the integration of vehicle following and overtaking behaviour for general traffic as heuristics for the coordination between vehicles. The resultant coordination strategy is fast and near-optimal. As the vehicles move, uncertainties may arise which are constantly adapted to, and may even lead to either the cancellation of an overtaking procedure or the initiation of one. Higher level planning is performed by Dijkstra's algorithm which indicates the route to be followed by the vehicle in a road network. Re-planning is carried out when a road blockage or obstacle is detected. Experimental results confirm the success of the algorithm subject to optimal high and low-level planning, re-planning and overtaking.
Resumo:
We discuss substorm observations made near 2100 magnetic local time (MLT) on March 7, 1991, in a collaborative study involving data from the European Incoherent Scatter radar, all-sky camera data, and magnetometer data from the Tromsø Auroral Observatory, the U.K. Sub-Auroral Magnetometer Network (SAMNET) and the IMAGE magnetometer chain. We conclude that for the substorm studied a plasmoid was not pinched off until at least 10 min after onset at the local time of the observations (2100 MLT) and that the main substorm electrojet expanded westward over this local time 14 min after onset. In the late growth phase/early expansion phase, we observed southward drifting arcs probably moving faster than the background plasma. Similar southward moving arcs in the recovery phase moved at a speed which does not appear to be significantly different from the measured plasma flow speed. We discuss these data in terms of the “Kiruna conjecture” and classical “near-Earth neutral line” paradigms, since the data show features of both models of substorm development. We suggest that longitudinal variation in behavior may reconcile the differences between the two models in the case of this substorm.
Resumo:
A novel single-phase voltage source rectifier capable to achieve High-Power-Factor (HPF) for variable speed refrigeration system application, is proposed in this paper. The proposed system is composed by a single-phase high-power-factor boost rectifier, with two cells in interleave connection, operating in critical conduction mode, and employing a soft-switching technique, controlled by a Field Programmable Gate Array (FPGA), associated with a conventional three-phase IGBT bridge inverter (VSI - Voltage Source Inverter), controlled by a Digital Signal Processor (DSP). The soft-switching technique for the input stage is based on zero-current-switching (ZCS) cells. The rectifier's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) in the input current, in compliance with the EEC61000-3-2 standards. The digital controller for the output stage has been developed using a conventional voltage-frequency control (scalar V/f control), and a simplified stator oriented Vector control, in order to verify the feasibility and performance of the proposed digital controls for continuous temperature control applied at a refrigerator prototype.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
High-speed countercurrent chromatography (HSCCC) is a leading method for the fast separation of natural products from plants. It was used for the preparative isolation of two flavone monoglucosides present in the capitula of Eriocaulon ligulatum (Veil.) L.B.Smith (Eriocaulaceae). This species, known locally as botão-dourado, is exported to Europe, Japan and North America as an ornamental species, constituting an important source of income for the local population of Minas Gerais State, Brazil. The solvent system, optimized in tests prior to the HSCCC run, consisted of the two phases of the mixture ethyl acetate: n-propanol: water (140:8:80, v/v/v), which led to the successful separation of 6-methoxyluteolin-7-O-β-D-allopyranoside and 6-methoxyapigenin-7-O-β-D-allopyranoside in only 3 hours. The two flavonoids were identified by NMR (1-D and 2-D) and ESI-MS, comparing their spectra with published data.
Resumo:
Many electronic drivers for the induction motor control are based on sensorless technologies. The proposal of this work Is to present an alternative approach of speed estimation, from transient to steady state, using artificial neural networks. The inputs of the network are the RMS voltage, current and speed estimated of the induction motor feedback to the input with a delay of n samples. Simulation results are also presented to validate the proposed approach. © 2006 IEEE.
Resumo:
This paperwork presents a Pulse Width Modulation (PWM) speed controller for an electric mini-baja-type car. A battery-fed 1-kW three-phase induction motor provides the electric vehicle traction. The open-loop speed control is implemented with an equal voltage/frequency ratio, in order to maintain a constant amount of torque on all velocities. The PWM is implemented by a low-cost 8-bit microcontroller provided with optimized ROM charts for distinct speed value implementations, synchronized transition between different charts and reduced odd harmonics generation. This technique was implemented using a single passenger mini-baja vehicle, and the essays have shown that its application resulted on reduced current consumption, besides eliminating mechanical parts. Copyright © 2007 by ABCM.
Separation of the toxic zierin from Zollernia ilicifolia by high speed countercurrent chromatography
Resumo:
Preliminary pharmacological assays of the 70% methanol extract from the leaves of the Brazilian medicinal plant Zollernia ilicifolia Vog. (Fabaceae) showed analgesic and antiulcerogenic effects. Previous analyses have shown that this extract contains, besides flavonoid glycosides and saponins, a toxic cyanogenic glycoside. Flavonoids and saponins are compounds reported in literature with antiulcerogenic activity. In this work, we developed a methodology to separate the cyanogenic glycoside from these compounds in order to obtain enough amount of material to perform pharmacological assays. The cyanogenic glycoside zierin (2S)-β-D-glucopyranosyloxy-(3-hydroxy-phenyl)- acetonitrile was separated from the other components by high speed countercurrent chromatography (HSCCC). The solvent system used was composed of chloroform-methanol-n-propanol-water (5:6:1:4, v/v/v/v). This technique led to the separation of zierin from the possible active compounds of Zollernia ilicifolia.
Resumo:
This paper is based on the analysis and implementation of a new drive system applied to refrigeration systems, complying with the restrictions imposed by the IEC standards (Harmonic/Flicker/EMI-Electromagnetic Interference restrictions), in order to obtain high efficiency, high power factor, reduced harmonic distortion in the input current and reduced electromagnetic interference, with excellent performance in temperature control of a refrigeration prototype system (automatic control, precision and high dynamic response). The proposal is replace the single-phase motor by a three-phase motor, in the conventional refrigeration system. In this way, a proper control technique can be applied, using a closed-loop (feedback control), that will allow an accurate adjustment of the desirable temperature. The proposed refrigeration prototype uses a 0.5Hp three-phase motor and an open (Belt-Drive) Bitzer IY type compressor. The input rectifier stage's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) in the input current, in compliance with the IEC61000-3-2 standards. The digital controller for the output three-phase inverter stage has been developed using a conventional voltage-frequency control (scalar V/f control), and a simplified stator oriented Vector control, in order to verify the feasibility and performance of the proposed digital controls for continuous temperature control applied at the refrigerator prototype. ©2008 IEEE.