956 resultados para Coulomb-Mohr
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A collective Hamiltonian for a two alpha particles aggregate, which describes the 8Be nucleus, encompassing a collective potential and an inertia function of that system, is obtained and analyzed through the use of a technique - derived from an approach of the generator coordinate method (GCM) - which allows for the extraction of collective information. The nucleon-nucleon interaction considered here is the one proposed by Volkov plus the Coulomb repulsion. It is shown that nonlocal effects appear in those collective functions describing the spontaneously occurring breakup process. Furthermore, the result for the inertia function stands for a microscopically generated evidence supporting a double-folding-based model of the real part of the nucleus-nucleus nonlocal interaction recently proposed.
Resumo:
Using an effective two-body interaction potential, a molecular dynamics study of the structural properties of amorphous ZrF4 phase is presented. The effective pair potential includes steric repulsion, Coulomb interaction due to charge transfer, and charge-dipole interaction due to the large electronic polarizability of anions. The results for structural correlations, such as pair distribution functions, coordination numbers, and bond angle distributions are presented. Excellent agreement is obtained by comparing experimental X-ray diffraction and the simulated static X-ray structure factor. © 1993.
Resumo:
The nuclear dependence of the neutron-proton mass difference is examined in a relativistic harmonic quark model with the assumption of a swelling of the individual nucleon originated by a decrease of the spring constant inside the nuclear medium. A decrease of the neutron-proton mass difference is obtained which is reasonably small and in the right direction to cope with the Nollen-Schiffer anomaly in mirror nuclei. © 1992 Società Italiana di Fisica.
Resumo:
Pós-graduação em Física - FEG
Resumo:
Pós-graduação em Física - IFT
Resumo:
The Ball and Beam system is a common didactical experiment in control laboratories that can be used to illustrate many different closed-loop control techniques. The plant itself is subjected to many nonlinear effects, which the most common comes from the relative motion between the ball and the beam. The modeling process normally uses the lagrangean formulation. However, many other nonlinear effects, such as non-viscous friction, beam flexibility, ball slip, actuator elasticity, collisions at the end of the beam, to name a few, are present. Besides that, the system is naturally unstable. In this work, we analyze a subset of these characteristics, in which the ball rolls with slipping and the friction force between the ball and the beam is non-viscous (Coulomb friction). Also, we consider collisions at the ends of the beam, the actuator consists of a (rubber made) belt attached at the free ends of the beam and connected to a DC motor. The model becomes, with those nonlinearities, a differential inclusion system. The elastic coefficients of the belt are experimentally identified, as well as the collision coefficients. The nonlinear behavior of the system is studied and a control strategy is proposed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We extend application of our lowest-order perturbative approach (in electron-electron correlation) for analysis of photo-double-ionization (PDI) of He [A.Y. Istomin et al., J. Phys. B 35, L543 (2002)] to excess energies up to 450 eV and to analysis of circular dichroism. We find that account of electron correlation in the final state to first order provides predictions for the triply differential cross section and circular dichroism that are in reasonable agreement with absolute data for excess energies up to 80 eV. For an excess energy of 450 eV, account of electron correlation in both initial and final states is necessary and the predicted triply differential cross sections are in agreement with absolute data only for large mutual ejection angles. We find that at excess energies of a few tens of eV, the PDI is dominated by the "virtual" knock-out mechanism, while the "direct" (on-shell) knock-out process gives only small contributions for large mutual ejection angles. As a result, we conclude that the circular dichroism effect at these energies originates from the nonzero electron Coulomb phase shifts.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)