962 resultados para Cortex visuel


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abnormalities in fronto-limbic-striatal white matter (WM) have been reported in bipolar disorder (BD), but results have been inconsistent across studies. Furthermore, there have been no detailed investigations as to whether acute mood states contribute to microstructural changes in WM tracts. In order to compare fiber density and structural integrity within WM tracts between BD depression and remission, whole-brain fractional anisotropy (FA) and mean diffusivity (MD) were assessed in 37 bipolar I disorder (BD-I) patients (16 depressed and 21 remitted), and 26 healthy individuals with diffusion tensor imaging. Significantly decreased FA and increased MD in bilateral prefronto-limbic-striatal white matter and right inferior fronto-occipital, superior and inferior longitudinal fasciculi were shown in all BD-I patients versus controls, as well as in depressed BD-I patients compared to both controls and remitted BD-I patients. Depressed BD-I patients also exhibited increased FA in the ventromedial prefrontal cortex. Remitted BD-I patients did not differ from controls in FA or MD. These findings suggest that BD-I depression may be associated with acute microstructural WM changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Neuropsychological deficits have been reported in association with first-episode psychosis (FEP). Reductions in grey matter (GM) volumes have been documented in FEP subjects compared to healthy controls. However, the possible inter-relationship between the findings of those two lines of research has been scarcely investigated. Objective: To investigate the relationship between neuropsychological deficits and GM volume abnormalities in a population-based sample of FEP patients compared to healthy controls from the same geographical area. Methods: FEP patients (n = 88) and control subjects (n = 86) were evaluated by neuropsychological assessment (Controlled Oral Word Association Test, forward and backward digit span tests) and magnetic resonance imaging using voxel-based morphometry. Results: Single-group analyses showed that prefrontal and temporo-parietal GM volumes correlated significantly (p < 0.05, corrected) with cognitive performance in FEP patients. A similar pattern of direct correlations between neocortical GM volumes and cognitive impairment was seen in the schizophrenia subgroup (n = 48). In the control group, cognitive performance was directly correlated with GM volume in the right dorsal anterior cingulate cortex and inversely correlated with parahippocampal gyral volumes bilaterally. Interaction analyses with ""group status"" as a predictor variable showed significantly greater positive correlation within the left inferior prefrontal cortex (BA46) in the FEP group relative to controls, and significantly greater negative correlation within the left parahippocampal gyrus in the control group relative to FEP patients. Conclusion: Our results indicate that cognitive deficits are directly related to brain volume abnormalities in frontal and temporo-parietal cortices in FEP subjects, most specifically in inferior portions of the dorsolateral prefrontal cortex. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural magnetic resonance imaging and postmortem studies showed volume loss in the hippocampus in schizophrenia. The noted tissue reduction in the posterior section suggests that some cellular subfractions within this structure might be reduced in schizophrenia. To address this, we investigated numbers and densities of neurons, oligodendrocytes and astrocytes in the posterior hippocampal subregions in postmortem brains from ten patients with schizophrenia and ten matched controls using design-based stereology performed on Nissl-stained sections. Compared to the controls, the patients with schizophrenia showed a significant decrease in the mean number of oligodendrocytes in the left and right CA4. This is the first finding of reduced numbers of oligodendrocytes in CA4 of the posterior part of the hippocampus in schizophrenia. Our results are in line with earlier findings in the literature concerning decreased numbers of oligodendrocytes in the prefrontal cortex in schizophrenia. Our results may indicate disturbed connectivity of the CA4 of the posterior part of the hippocampus in schizophrenia and, thus, contribute to the growing number of studies showing the involvement of posterior hippocampal pathology in the pathophysiology of schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: The purpose of this study was to investigate regional structural abnormalities in the brains of five patients with refractory obsessive-compulsive disorder (OCD) submitted to gamma ventral capsulotomy. Methods: We acquired morphometric magnetic resonance imaging (MRI) data before and after 1 year of radiosurgery using a 1.5-T MRI scanner. Images were spatially normalized and segmented using optimized voxel-based morphometry (VBM) methods. Voxelwise statistical comparisons between pre- and post-surgery MRI scans were performed using a general linear model. Findings in regions predicted a priori to show volumetric changes (orbitofrontal cortex, anterior cingulate gyrus, basal ganglia and thalamus) were reported as significant if surpassing a statistical threshold of p<0.001 (uncorrected for multiple comparisons). Results: We detected a significant regional postoperative increase in gray matter volume in the right inferior frontal gyri (Brodmann area 47, BA47) when comparing all patients pre and postoperatively. Conclusions: Our results support the current theory of frontal-striatal-thalamic-cortical (FSTC) circuitry involvement in OCD pathogenesis. Gamma ventral capsulotomy is associated with neurobiological changes in the inferior orbitofrontal cortex in refractory OCD patients. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although abnonnalities in brain structures involved in the neurobiology of fear and anxiety have been implicated in the pathophysiology of panic disorder (PD), relatively few studies have made use of voxel-based morphometry (VBM) magnetic resonance imaging (MRI) to determine structural brain abnormalities in PD. We have assessed gray matter volume in 19 PD patients and 20 healthy volunteers using VBM. Images were acquired using a 1.5 T MRI scanner, and were spatially normalized and segmented using optimized VBM. Statistical comparisons were performed using the general linear model. A relative increase in gay matter volume was found in the left insula of PD patients compared with controls. Additional structures showing differential increases were the left superior temporal gyrus, the midbrain, and the pons. A relative gray matter deficit was found in the right anterior cingulate cortex. The insula and anterior cingulate abnormalities may be relevant to the pathophysiology of PD, since these structures participate in the evaluation process that ascribes negative emotional meaning to potentially distressing cognitive and interoceptive sensory information. The abnormal brain stem structures may be involved in the generation of panic attacks. (C) 2007 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Steroidogenic factor 1 (SF-1) is a key determinant of endocrine development and function of adrenal cortex. SF-1 overexpression and gene amplification were previously demonstrated in a small group of pediatric adrenocortical tumors. Objective: Our objective was to determine the frequency of SF-1 protein expression and gene amplification in a large cohort of pediatric and adult adrenocortical tumors. Patients: SF-1 protein expression was assessed in a cohort of 103 adrenocortical tumors from 36 children and 67 adults, whereas gene amplification was studied in 38 adrenocortical tumors ( 17 from children). Methods: Tissue microarray, multiplex ligation-dependent probe amplification, and quantitative real-time PCR were used. Results: Astrong nuclear SF-1 expression was detected by tissue microarray in 56% (20 of 36) and 19% (13 of 67) of the pediatric and adult adrenocortical tumors, respectively (P = 0.0004). Increased SF-1 copy number was identified in 47% (eight of 17) and 10% (two of 21) of the pediatric and adult adrenocortical tumors, respectively (P = 0.02). All adrenocortical tumors with SF-1 gene amplification showed a strong SF-1 staining, whereas most of the tumors (61%) without SF-1 amplification displayed a weak or negative staining (P = 0.0008). Interestingly, a strong SF-1 staining was identified in five (29%) pediatric adrenocortical tumors without SF-1 amplification. The frequency of SF-1 overexpression and gene amplification was similar in adrenocortical adenomas and carcinomas. Conclusion: We demonstrated a higher frequency of SF-1 overexpression and gene amplification in pediatric than in adult adrenocortical tumors, suggesting an important role of SF-1 in pediatric adrenocortical tumorigenesis. (J Clin Endocrinol Metab 95: 1458-1462, 2010)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present a new neuroeconomics model for decision-making applied to the Attention-Deficit/Hyperactivity Disorder (ADHD). The model is based on the hypothesis that decision-making is dependent on the evaluation of expected rewards and risks assessed simultaneously in two decision spaces: the personal (PDS) and the interpersonal emotional spaces (IDS). Motivation to act is triggered by necessities identified in PDS or IDS. The adequacy of an action in fulfilling a given necessity is assumed to be dependent on the expected reward and risk evaluated in the decision spaces. Conflict generated by expected reward and risk influences the easiness (cognitive effort) and the future perspective of the decision-making. Finally, the willingness (not) to act is proposed to be a function of the expected reward (or risk), adequacy, easiness and future perspective. The two most frequent clinical forms are ADHD hyperactive (AD/HDhyp) and ADHD inattentive (AD/HDdin). AD/HDhyp behavior is hypothesized to be a consequence of experiencing high rewarding expectancies for short periods of time, low risk evaluation, and short future perspective for decision-making. AD/HDin is hypothesized to be a consequence of experiencing high rewarding expectancies for long periods of time, low risk evaluation, and long future perspective for decision-making.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Functional brain variability has been scarcely investigated in cognitively healthy elderly subjects, and it is currently debated whether previous findings of regional metabolic variability are artifacts associated with brain atrophy. The primary purpose of this study was to test whether there is regional cerebral age-related hypometabolism specifically in later stages of life. MATERIALS AND METHODS: MR imaging and FDG-PET data were acquired from 55 cognitively healthy elderly subjects, and voxel-based linear correlations between age and GM volume or regional cerebral metabolism were conducted by using SPM5 in images with and without correction for PVE. To investigate sex-specific differences in the pattern of brain aging, we repeated the above voxelwise calculations after dividing our sample by sex. RESULTS: Our analysis revealed 2 large clusters of age-related metabolic decrease in the overall sample, 1 in the left orbitofrontal cortex and the other in the right temporolimbic region, encompassing the hippocampus, the parahippocampal gyrus, and the amygdala. The division of our sample by sex revealed significant sex-specific age-related metabolic decrease in the left temporolimbic region of men and in the left dorsolateral frontal cortex of women. When we applied atrophy correction to our PET data, none of the above-mentioned correlations remained significant. CONCLUSIONS: Our findings suggest that age-related functional brain variability in cognitively healthy elderly individuals is largely secondary to the degree of regional brain atrophy, and the findings provide support to the notion that appropriate PVE correction is a key tool in neuroimaging investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Cannabis is the most used illicit drug in the world, and its use has been associated with prefrontal cortex (PFC) dysfunction, including deficits in executive functions (EF). Considering that EF may influence treatment outcome, it would be interesting to have a brief neuropsychological battery to assess EF in chronic cannabis users (CCU). In the present study, the Frontal Assessment Battery (FAB), a brief, easy to use neuropsychological instrument aimed to evaluate EF, was used to evaluate cognitive functioning of CCU. Methods: We evaluated 107 abstinent CCU with the FAB and compared with 44 controls matched for age, estimated IQ, and years of education. Results: CCU performed poorly as compared to controls (FAB total score = 16.53 vs. 17.09, p .05). CCU had also a poor performance in the Motor Programming subtest (2.47 vs. 2.73, p .05). Conclusion: This study examined effects of cannabis in executive functioning and showed evidence that the FAB is sensitive to detect EF deficits in early abstinent chronic cannabis users. Clinical significance of these findings remains to be investigated in further longitudinal studies. FAB may be useful as a screening instrument to evaluate the necessity for a complete neuropsychological assessment in this population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiotensin II (Ang II) and vascular endothelial growth factor (VEGF) are important mediators of kidney injury in diabetes. Acute hyperglycemia increased synthesis of intrarenal Ang I and Ang II and resulted in activation of both Ang II receptors, AT1 and AT2, in the kidney. Losartan (specific AT1 antagonist) or PD123319 (specific AT2 antagonist) did not affect hyperglycemia but prevented activation of renal AT1 and AT2, respectively. In murine renal cortex, acute hyperglycemia increased VEGF protein but not mRNA content after 24 h, which suggested translational regulation. Blockade of AT2, but not AT1, prevented increase in VEGF synthesis by inhibiting translation of VEGF mRNA in renal cortex. Acute hyperglycemia increased VEGF expression in wild type but not in AT2 knockout mice. Binding of heterogeneous nuclear ribonucleoprotein K to VEGF mRNA, which stimulates its translation, was prevented by blockade of AT2, but not AT1. The Akt-mTOR-p70(S6K) signaling pathway, involved in the activation of mRNA translation, was activated in hyperglycemic kidneys and was blocked by the AT2 antagonist. Elongation phase is an important step of mRNA translation that is controlled by elongation factor 1A (eEF1A) and 2 (eEF2). Expression of eEF1A and activity of eEF2 was higher in kidney cortex from hyperglycemic mice and only the AT2 antagonist prevented these changes. To assess selectivity of translational control of VEGF expression, we measured expression of fibronectin (FN) and laminin beta 1 (lam beta 1): acute hyperglycemia increased FN expression at both protein and mRNA levels, indicating transcriptional control, and did not affect the expression of lam beta 1. To confirm results obtained with PD123319, we induced hyperglycemia in AT2 knockout mice and found that in the absence of AT2, translational control of VEGF expression by hyperglycemia was abolished. Our data show that acute hyperglycemia stimulates Ang II synthesis in murine kidney cortex, this leads to AT2 activation and stimulation of VEGF mRNA translation, via the Akt-mTOR-p70(S6K) signaling pathway. Our data show that exclusive translational control of protein expression in the kidney by acute hyperglycemia is not a general phenomenon, but do not prove that it is restricted to VEGF. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is increasing evidence of a reciprocal fronto-limbic network in the pathogenesis of mood disorders. Prior in vivo proton ((1)H) spectroscopy studies provide evidence of abnormal neurochemical levels in the cingulate and dorsolateral prefrontal cortex (DLPFC) of adult subjects with major depressive disorder (MOD). We examined whether similar abnormalities occur in children and adolescents with MDD. We collected two-dimensional multi-voxel in vivo 1H spectroscopy data at 1.5 Tesla to quantify levels of N-acetyl-aspartate (NAA), glycerolphosphocholine plus phosphocholine (GPC + PC), and phosphocreatine plus creatine (PCr + Cr) in the DLPFC, medial prefrontal cortex (MPFC), and anterior cingulate (AC) of children and adolescents aged 8-17 years with MDD (n = 16) compared with healthy control subjects (n = 38). Analysis of covariance with age and gender as covariates was performed. MDD subjects showed significantly lower levels of NAA in the right MPFC and right AC than controls. MDD subjects also had significantly lower levels of GPC + PC in the right AC than control subjects. There were no significant differences in other metabolites in the studied regions. Pediatric patients with MDD exhibit neurochemical alterations in prefrontal cortex regions that are important in the monitoring and regulation of emotional states. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obstetric complications play a role in the pathophysiology of schizophrenia. However, the biological consequences during neurodevelopment until adulthood are unknown. Microarrays have been used for expression profiling in four brain regions of a rat model of neonatal hypoxia as a common factor of obstetric complications. Animals were repeatedly exposed to chronic hypoxia from postnatal (PD) day 4 through day 8 and killed at the age of 150 days. Additional groups of rats were treated with clozapine from PD 120-150. Self-spotted chips containing 340 cDNAs related to the glutamate system (""glutamate chips"") were used. The data show differential (up and down) regulations of numerous genes in frontal (FR), temporal (TE) and parietal cortex (PAR), and in caudate putamen (CPU), but evidently many more genes are upregulated in frontal and temporal cortex, whereas in parietal cortex the majority of genes are downregulated. Because of their primary presynaptic occurrence, five differentially expressed genes (CPX1, NPY, NRXN1, SNAP-25, and STX1A) have been selected for comparisons with clozapine-treated animals by qRT-PCR. Complexin 1 is upregulated in FR and TE cortex but unchanged in PAR by hypoxic treatment. Clozapine downregulates it in FR but upregulates it in PAR cortex. Similarly, syntaxin 1A was upregulated in FR, but downregulated in TE and unchanged in PAR cortex, whereas clozapine downregulated it in FR but upregulated it in PAR cortex. Hence, hypoxia alters gene expression regionally specific, which is in agreement with reports on differentially expressed presynaptic genes in schizophrenia. Chronic clozapine treatment may contribute to normalize synaptic connectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microtubule-associated protein Tau promotes the assembly and stability of microtubules in neuronal cells. Six Tau isoforms are expressed in adult human brain. All six isoforms become abnormally hyperphosphorylated and form neurofibrillary tangles in Alzheimer disease (AD) brains. In AD, reduced activity of phospholipase A(2) (PLA(2)), specifically of calcium-dependent cytosolic PLA(2) (cPLA(2)) and calcium-independent intracellular PLA(2) (iPLA(2)), was reported in the cerebral cortex and hippocampus, which positively correlated with the density of neurofibrillary tangles. We previously demonstrated that treatment of cultured neurons with a dual cPLA(2) and iPLA(2) inhibitor, methyl arachidonyl fluorophosphonate (MAFP), decreased total Tau levels and increased Tau phosphorylation at Ser(214) site. The aim of this study was to conduct a preliminary investigation into the effects of in vivo infusion of MAFP into rat brain on PLA(2) activity and total Tau levels in the postmortem frontal cortex and dorsal hippocampus. PLA(2) activity was measured by radioenzymatic assay and Tau levels were determined by Western blotting using the anti-Tau 6 isoforms antibody. MAFP significantly inhibited PLA(2) activity in the frontal cortex and hippocampus. The reactivity to the antibody revealed three Tau protein bands with apparent molecular weight of close to 40, 43 and 46 kDa in both brain areas. MAFP decreased the 46 kDa band intensity in the frontal cortex, and the 43 and 46 kDa band intensities in the hippocampus. The results indicate that in vivo PLA(2) inhibition in rat brain decreases the levels of total (nonphosphorylated plus phosphorylated) Tau protein and corroborate our previous in vitro findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: The absence of pathophysiologically relevant diagnostic markers of bipolar disorder (BD) leads to its frequent misdiagnosis as unipolar depression (UD). We aimed to determine whether whole brain white matter connectivity differentiated BD from UD depression. Methods: We employed a three-way analysis of covariance, covarying for age, to examine whole brain fractional anisotropy (FA), and corresponding longitudinal and radial diffusivity, in currently depressed adults: 15 with BD-type I (mean age 36.3 years, SD 12.0 years), 16 with recurrent UD (mean age 32.3 years, SD 10.0 years), and 24 healthy control adults (HC) (mean age 29.5 years, SD 9.43 years). Depressed groups did not differ in depression severity, age of illness onset, and illness duration. Results: There was a main effect of group in left superior and inferior longitudinal fasciculi (SLF and ILF) (all F >= 9.8; p <= .05, corrected). Whole brain post hoc analyses (all t >= 4.2; p <= .05, corrected) revealed decreased FA in left SLF in BD, versus UD adults in inferior temporal cortex and, versus HC, in primary sensory cortex (associated with increased radial and decreased longitudinal diffusivity, respectively); and decreased FA in left ILF in UD adults versus HC. A main effect of group in right uncinate fasciculus (in orbitofrontal cortex) just failed to meet significance in all participants but was present in women. Post hoc analyses revealed decreased right uncinate fasciculus FA in all and in women, BD versus HC. Conclusions: White matter FA in left occipitotemporal and primary sensory regions supporting visuospatial and sensory processing differentiates BD from UD depression. Abnormally reduced FA in right fronto-temporal regions supporting mood regulation, might underlie. predisposition to depression in BD. These measures might help differentiate pathophysiologic processes of BD versus UD depression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early after stroke, there is loss of intracortical facilitation (ICF) and increase in short-interval intracortical inhibition (SICI) in the primary motor cortex (M1) contralateral to a cerebellar infarct. Our goal was to investigate intracortical M1 function in the chronic stage following cerebellar infarcts (> 4 months). We measured resting motor threshold (rMT), SICI, ICF, and ratios between motor-evoked potential amplitudes (MEP) and supramaximal M response amplitudes (MEP/M; %), after transcranial magnetic stimulation was applied to the M1 contralateral (M1(contralesional)) and ipsilateral (M1(ipsilesional)) to the cerebellar infarct in patients and to both M1s of healthy age-matched volunteers. SICI was decreased in M1(contralesional) compared to M1(ipsilesional) in the patient group in the absence of side-to-side differences in controls. There were no significant interhemispheric or between-group differences in rMT, ICF, or MEP/M (%). Our results document disinhibition of M1(contralesional) in the chronic phase after cerebellar stroke.