931 resultados para Correlation of forces
Resumo:
Uranium and thorium contents, as well as their distribution patterns have been studied in biogenic phosphates from the Atlantic and Pacific Oceans. Differently lithified fish remains (bones, scales, teeth) and marine mammal bones (ribs, vertebras, earbones) collected from both reduced shelf sediments and oxidized pelagic ones have been analyzed. U content in the material varies from 0.7 to 700 ppm, and Th content - from <0.5 to 14 ppm. U/Th ratio varies from 0.16 to 400. Contents of both elements increase with lithification of biogenic phosphates. U concentration is more intense on shelves, whereas thorium concentration increases in pelagic areas. Partial positive correlation of U and Th with Fe and negative correlation of U with organic carbon are noted. The latter corresponds to higher lithification of biogenic phosphates. Calcium phosphate transformed from hydroxyapatite to fluorcarbonate-apatite is the main carrier of U, while transformed organic matter is a minor agent. Thorium is mainly bound with Fe.
Resumo:
Astronomical tuning of sedimentary records to precise orbital solutions has led to unprecedented resolution in the geological time scale. However, the construction of a consistent astronomical time scale for the Paleocene is controversial due to uncertainties in the recognition of the exact number of 405-kyr eccentricity cycles and accurate correlation between key records. Here, we present a new Danian integrated stratigraphic framework using the land-based Zumaia and Sopelana hemipelagic sections from the Basque Basin and deep-sea records drilled during Ocean Drilling Program (ODP) Legs 198 (Shatsky Rise, North Pacific) and 208 (Walvis Ridge, South Atlantic) that solves previous discrepancies. The new coherent stratigraphy utilises composite images from ODP cores, a new whole-rock d13C isotope record at Zumaia and new magnetostratigraphic data from Sopelana. We consistently observe 11 405-kyr eccentricity cycles in all studied Danian successions. We achieve a robust correlation of bioevents and stable isotope events between all studied sections at the ~100-kyr short-eccentricity level, a prerequisite for paleoclimatic interpretations. Comparison with and subsequent tuning of the records to the latest orbital solution La2011 provides astronomically calibrated ages of 66.022 ± 0.040 Ma and 61.607 ± 0.040 Ma for the Cretaceous-Paleogene (K-Pg) and Danian-Selandian 105 (D-S) boundaries respectively. Low sedimentation rates appear common in all records in the mid-Danian interval, including conspicuous condensed intervals in the oceanic records that in the past have hampered the proper identification of cycles. The comprehensive interbasinal approach applied here reveals pitfalls in time scale construction, filtering techniques in particular, and indicates that some caution and scrutiny has to be applied when building orbital chronologies. Finally, the Zumaia section, already hosting the Selandian Global Boundary Stratotype Section and Point (GSSP), could serve as the global Danian unit stratotype in the future.
Resumo:
Pelagic sediments recording an extreme and short-lived global warming event, the Late Paleocene Thermal Maximum (LPTM), were recovered from Hole 999B (Colombian Basin) and Holes 1001A and 1001B (lower Nicaraguan Rise) in the Caribbean Sea during Ocean Drilling Program Leg 165. The LPTM consists of a 0.3-0.97 m calcareous claystone to claystone horizon. High-resolution downhole logging (Formation MicroScanner [FMS]), standard downhole logs (resistivity, velocity, density, natural gamma ray, and geochemical log), and non-destructive chemical and physical property (multisensor core logger [MSCL] and X-ray fluorescence [XRF] core scanner) data were used to identify composite sections from parallel holes and to record sedimentological and environmental changes associated with the LPTM. Downhole logging data indicate an abrupt and distinct difference in physical and chemical properties that extend for tens of meters above and below the LPTM. These observations indicate a rapid environmental change at the LPTM, which persists beyond the LPTM anomaly. Comparisons of gamma-ray attenuation porosity evaluator (GRAPE) densities from MSCL logging on split cores with FMS resistivity values allows core-to-log correlation with a high degree of accuracy. High-resolution magnetic susceptibility measurements of the cores are compared with elemental concentrations (e.g., Fe, Ca) analyzed by high-resolution XRF scanning. The high-resolution data obtained from several detailed core and downhole logging methods are the key to the construction of composite sections, the correlation of both adjacent holes and distant sites, and core-log integration. These continuous-depth series reveal the LPTM as a multiphase event with a nearly instantaneous onset, followed by a much different set of physical and chemical conditions of short duration, succeeded by a longer transition to a new, more permanent set of environmental circumstances. The estimated duration of these 'phases' are consistent with paleontological and isotopic studies of the LPTM
Resumo:
Very fine quartz sand was examined from Paleogene and Neogene sediments of ODP Sites 693, 694, 695, 696, and 697 to determine their grain roundness using Fourier analysis and SEM surface texture characteristics. The objective of this study was to identify grain roundness and surface texture characteristics unique to East (Site 693) and West (Sites 695, 696, and 697) Antarctica and to glacial regimes. Once identified, these distinguishing features could then be used to determine changes in source area and glacial conditions in the central Weddell Sea Basin (Site 694). Three end members of very fine quartz sand are recognized in the Oligocene to Pleistocene sediments of the Weddell Sea: angular, rounded, and intermediate. End member 1 (angular) consists of extremely angular grains with numerous fracture textures. Previous investigations suggested that these sands are derived from crystalline rocks that fractured during formation or deformation and/or were exposed to weathering by ice. In this study, however, the correlation of angularity with ice activity is problematical as the most angular sands were recovered in the lower Oligocene sediments of the South Orkney Microcontinent, a period of temperate climatic conditions. End member 3 (rounded) consists of rounded grains with chemically and mechanically produced surface textures. These sands are presumed to be derived from the Beacon-type rocks in East Antarctica and the sedimentary deposits of the Northern Antarctic Peninsula. End member 2 (intermediate) grains display crystalline nodes and grain embayments. They are thought to be derived from felsic intrusives, East Antarctic quartzites, basement metamorphics of the South Orkney Microcontinent, and/or the Andean intrusive series of West Antarctica. Unfortunately, no features unique to either the East or West Antarctic sediment sources or to glacial conditions could be isolated. Therefore, the objective of determining provenance changes and sediment erosion and transport mechanisms could not be achieved using this approach.
Resumo:
The fluorescence of porewaters from marine sediment cores from six different areas was measured. In most cases, fluorescence was affected primarily by the diagenesis of organic carbon first through sulfate reduction and subsequently by methane generation. Typically, fluorescence, dissolved organic carbon (DOC), absorbance, alkalinity, and ammonium ion concentrations correlate quite well, increasing in the upper sections of anoxic sediments and co-varying in deeper sections of these cores. The good correlation of DOC with fluorescence in the three cores in which DOC was measured indicates that fluorescence can be used to make a first order estimate of DOC concentration in anoxic porewaters. Data are consistent with a model in which labile organic matter in the sediments is broken down by sulfur reducing bacteria to low molecular weight monomers. These monomers are either remineralized to CO2 or polymerize to form dissolved, fluorescent, high molecular weight molecules. The few exceptions to this model involve hydrothermally generated hydrocarbons that are formed in situ in the Guaymas Basin or are horizontally advected along the decollement in the Nankai Trench.
Resumo:
Volcanic ash was recovered from lower Aptian to Albian deposits from DSDP Sites 463, 465, and 466; pelagic clay of the upper Pleistocene to Upper Cretaceous was recovered mainly from Site 464, with minor amounts at Sites 465 and 466. We present X-ray-mineralogy data on pelagic clay and altered volcanic ash recovered from the four Leg 62 sites. In addition, two ash samples from Sites 463 and 465, a pelagic clay from Site 464, and a clay vein from the basaltic basement at Site 464 each were analyzed for major, minor, and trace elements. Our purpose is to describe the mineralogy and chemistry of altered ash and pelagic clays, to determine the sources of their parent material, and to delineate the diagenetic history of these clay-rich deposits. Correlation of chemistry and mineralogy of ash and pelagic clay with volcanic rocks suspected to be their parent material is not always straightforward, because weathering and diagenetic alteration caused depletion or enrichment of many elements.
Resumo:
The southernmost record of Maestrichtian pelagic carbonate sedimentation was recovered from ODP Leg 113 Holes 689B and 690C, drilled on the Maud Rise in the eastern Weddell Sea sector of the Southern Ocean (65°S). Well preserved and abundant planktonic foraminifers occur throughout Maestrichtian cores from both holes, providing a nearly complete biogeographic and biostratigraphic history of this region. Diversity is low compared to tropical and subtropical assemblages, with a maximum within sample diversity of 16 planktonic foraminifer species and a diversity total for the Maestrichtian of 24 species. The assemblages are dominated throughout by Heterohelix, Globigerinelloides, and a new species of Archaeoglobigerina, whereas keeled taxa are completely absent from the lower Maestrichtian and rare in the middle through upper Maestrichtian sediments. Three planktonic foraminifer species are described as new and are recognized as being endemic to the Austral Province. These include Archaeoglobigerina australis n. sp., Hedbergella sliteri n. sp., and Archaeoglobigerina mateola n. sp. The former two species were previously illustrated in reports on Late Cretaceous foraminifers from the Falkland Plateau and the northern Antarctic Peninsula. Two keeled and five non-keeled planktonic foraminifers, previously not found in high latitude Maestrichtian sediments, first appeared at the Maud Rise during the late early and late Maestrichtian. Correlation with their stratigraphic ranges in low latitude sequences shows that their first appearance datums are considerably younger at the Maud Rise than in the lower latitudes. The most likely explanation for this observation is that there was a warming in the south polar region during the late early and late Maestrichtian and a concomitant poleward migration of stenothermal taxa. However, oxygen isotopic paleotemperature results from Sites 689 and 690 (Barrera and Huber, 1990, doi:10.2973/odp.proc.sr.113.137.1990) show a long-term cooling trend throughout the Maestrichtian, indicating that other factors may have played a more important role than temperature in the distribution of Maestrichtian planktonic foraminifers. A new biostratigraphic scheme is proposed for the Antarctic because of the absence of thermophilic planktonic foraminifers used to identify existing low to middle latitude zones. The Globigerinelloides impensus Partial Range Zone is defined for the late Campanian-Maestrichtian, the Globotruncanita havanensis Partial Range Zone is redefined for the early to late early Maestrichtian, and the Abathomphalus mayaroensis Total Range Zone is recognized. Good quality magnetic polarity data obtained from both Maud Rise sites (Hamilton, 1990, doi:10.2973/odp.proc.sr.113.179.1990) enables magnetobiostratigraphic correlation of twelve foraminifer datums with the geomagnetic polarity time scale of Haq et al. (1987). The geochronology thus obtained is crucial for accurate cross-latitudinal correlation and interpretation of the paleoceanographic history of the Antarctic region during the Maestrichtian time period.
Resumo:
The early Cenozoic marine carbon isotopic record is marked by a long-term shift from high d13C values in the late Paleocene to values that are 2 to 3 lower in the early Eocene. The shift is recorded in fossil carbonates from each ocean basin and represents a large change in the distribution of 12C between the ocean and other carbon reservoirs. Superimposed upon this long-term shift are several distinct carbon isotopic negative excursions that are also recorded globally. These carbon isotopic 'events' near the Paleocene-Eocene boundary provide strati-graphic information that can facilitate intersite correlations between marine and non-marine sequences. Here we present a detailed marine carbon isotopic stratigraphy across the Paleocene-Eocene boundary that is constrained by calcareous nannofossil and planktonic foraminifera bio-stratigraphy and magnetostratigraphy. We show that several distinct carbon isotopic changes are recorded in uppermost Paleocene and lowermost Eocene marine biogenic carbonate sediments. At least one of these isotopic changes in the ocean's carbon isotopic composition was transmitted to terrestrial carbon reservoirs, including plant biomass via atmospheric CO2. As a consequence of this exchange of 12C between the ocean and terrestrial carbon reservoirs, it is possible to use carbon isotope stratigraphy to correlate the uppermost Paleocene and lowermost Eocene non-fossiliferous terrestrial sediments of the Paris Basin with marine sequences.
Resumo:
Drilling during Leg 167 at the California margin was scheduled to recover continuous sedimentary sections. Multiple advanced piston core (APC) holes drilled at different depth offsets provided core overlap in successive APCs. Correlation of high-resolution laboratory physical properties data from adjacent APC holes was used to compile composite depth sections for each site. The composite depth sections were used to confirm continuous recovery and enable high-resolution sampling. The meters composite depth (mcd) scale differs from the shipboard meters below seafloor (mbsf) scale because of (1) core expansion following recovery (MacKillop et al., 1995, doi:10.2973/odp.proc.sr.138.118.1995), (2) coring gaps, and (3) stretching/compression of sediment during coring (Lyle, Koizumi, Richter, et al., 1997, doi:10.2973/odp.proc.ir.167.1997). Moran (1997, doi:10.2973/odp.proc.sr.154.132.1997) calculated that sediment expansion accounted for 90%-95% of the Leg 154 depth offset between shipboard mbsf and the mcd scales. Terzaghi's one-dimensional theory of consolidation (Terzaghi, 1943) describes the response of sediments to stress loading and release. Mechanical loading in marine environments is provided by the buoyant weight of the overlying sediments. The load increases with depth below seabed, resulting in sediment volume reduction as water is "squeezed" out of the voids in the sediment. Stress release during core recovery results in expansion of the sediment and volume increase as water returns to the sediment. The sediment expansion or rebound defines the elastic properties of the sediment. In this study we examine the elastic deformation properties of sediments recovered from Sites 1020 and 1021. These results are used to (1) correct the laboratory index properties measurements to in situ values and (2) determine the contribution of sediment rebound to the depth offset between the mbsf and mcd scales.
Resumo:
Physical properties measurements provide a relatively inexpensive and fast way to obtain high-resolution estimates of the variations in sedimentological properties. To better resolve the validity and cause of the geophysical signals measured by the Ocean Drilling Program (ODP) shipboard multisensor track (MST) instruments, 223 x 10 cm**3 core samples were collected at 4 cm intervals in Core 167-1016B-17H at the California Margin Conception Transect for the measurements of index properties, carbonate content, and opal content. This core was chosen because hole-to-hole stratigraphic correlation of MST data suggested that Core 17H corresponds to a depth interval that displays the greatest range of amplitude of many physical properties.
Resumo:
We present composite depth scales for the multiply cored intervals from Sites 1150 and 1151. These new depth scales place coeval strata recovered in cores from different holes at a single site into a common stratigraphic framework. At Site 1150, double coring between Holes 1150A and 1150B occurred over only a short interval between ~703 and 713 meters below seafloor (mbsf), but this is sufficient to tie the upper portion of the stratigraphic section cored in Hole 1150A to the lower portion cored in Hole 1150B. The upper ~100 m of the sedimentary section at Site 1151 was double cored with the advanced piston corer and partially cored with the rotary core barrel, resulting in the complete recovery of this interval. The composite depth scales were constructed using Splicer software to vertically adjust the relative depths of various cores from one hole to the depths from another hole so as to align distinct physical properties measured on cores. The magnetic susceptibility data was the physical property most easily correlated between holes, and therefore primarily used to create a composite depth scale and spliced stratigraphic section. The spliced section is a continuous stratigraphic section constructed from representative cored intervals from the holes at a site. Both the splice and the composite depth scale can be applied to other data sets from Site 1151 to provide a stratigraphically continuous and laterally consistent basis for interpreting lithologic features or data sets. The resulting composite scale showed a 30% improvement in correlation of the magnetic susceptibility data relative to the original mbsf depth scale, and comparable improvement when applied to the other data sets.
Resumo:
The first detailed reconstruction of the continental palaeoclimate evolution of the Northwest German Tertiary (Late Oligocene to Pliocene) is presented. The paleoclimate data are derived from the paleobotanical record using the coexistence approach, a method recently introduced that employs climatic requirements of the Nearest Living Relatives of a fossil flora. Twenty six megafloras (fruits and seeds, leaves, woods) from the Tertiary succession of the Lower Rhine Basin and neighboring areas are analyzed with respect to ten meteorological parameters. Additionally, two sample sets from Late Miocene to Early Pliocene sediments comprising 396 palynofloras are analyzed by the same method providing a higher temporal resolution. The temperature curves show a comparatively cooler phase in the Late Oligocene, a warm interval the Middle Miocene, and a cooling starting at 14 Ma. The cooling trend persisted until Late Pliocene with a few higher frequency temperature variations observed. From the beginning of Late Miocene to the present, the seasonality increases and climate appears to have been less stable. As indicated by the precipitation data, a Cfa climate with wet summers persisted in NW Germany from Late Oligocene to Late Pliocene. The results obtained are well in accordance with regional and global isotope curves derived from the marine record, and allow for a refined correlation of the Tertiary succession in the Lower Rhine Basin with the international standard. It is shown that the reconstructed data are largely consistent with the continental climate record for the Northern Hemisphere, as reported by various authors. Discrepancies with previous reconstructions are discussed in detail.
Resumo:
Apart from Site 650, core disturbance due to rotary drilling severely compromised the quality of the magnetostratigraphic data obtained from Leg 107 sediments. The correlation of polarity zones to the geomagnetic polarity time scale cannot be made solely on the basis of pattern fit. The proposed correlations are consistent between sites, and this consistency is constrained by the biostratigraphic datums. The resulting biomagnetostratigraphic correlations are reviewed in the synthesis section of this volume. The purpose of this paper is to document the magnetic stratigraphies, and present the preferred correlation to the geomagnetic reversal time scale. Four implications of the proposed correlations are: (1) The Mio-Pliocene boundary occurs in the lowest reversed interval of the Gilbert (Chron 3r) at about 4.9 Ma. (2) The thick pre-Pliocene lacustrine sequence recovered at Site 652 appears to have been deposited entirely within a single reversed polarity chron (Chron 3r). (3) The balatino-type gypsum recovered at Site 654 was also deposited entirely within this polarity chron (Chron 3r). (4) The Tortonian-Messinian boundary occurs within a normal polarity zone which is probably correlative to Chron 6 (Chron 3B) giving a boundary age of about 6.4 Ma.
Resumo:
We correlated Miocene d18O increases at Ocean Drilling Program Site 747 with d18O increases previously identified at North Atlantic Deep Sea Drilling Project Sites 563 and 608. The d18O increases have been directly tied to the Geomagnetic Polarity Time Scale (GPTS) at Site 563 and 608, and thus our correlations at Site 747 provide a second-order correlation to the GPTS. Comparison of the oxygen isotope record at Site 747 with records at Sites 563 and 608 indicates that three as-yet-undescribed global Miocene d18O increases may be recognized and used to define stable isotope zones. The d18O maxima associated with the bases of Zones Mila, Milb, and Mi7 have magnetochronologic age estimates of 21.8, 18.3, and 8.5 Ma, respectively. The correlation of a d18O maximum at 70 mbsf at Site 747 to the base of Miocene isotope Zone Mi3 (13.6 Ma) provides a revised interpretation of four middle Miocene normal polarity intervals observed between 77 and 63 mbsf at Hole 747A. Oxygen isotope stratigraphy indicates that the reversed polarity interval at 70 mbsf, initially interpreted as Chronozone C5AAr, should be C5ABr. Instead of a concatenated Chronozone C5AD-C5AC with distinct Chronozones C5AB, C5AA, and C5A (as in the preliminary interpretation), d18O stratigraphy suggests that these normal polarity intervals are Chronozones C5AD, C5AC, and C5AB, whereas Chronozones C5AA-C5A are concatenated. This interpretation is supported by the d13C correlations. The upper Miocene magnetostratigraphic record at Hole 747A is ambiguous. Two upper Miocene d18O events at Site 747 can be correlated to the oxygen isotope records at Site 563 and 608 using the magnetostratigraphy derived at Hole 747B. Our chronostratigraphic revisions highlight the importance of stable isotope stratigraphy in attaining an integrated stratigraphic framework for the Miocene.
Resumo:
Variable climatic and oceanographic conditions characterized the last interglacial at high northern latitudes, probably related to changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC). The magnitudes of these changes are comparable to the Holocene variability, and were thus significantly subdued compared to glacial climate changes. A thermal optimum occurred during the early part of the interglacial, followed by a period of reduced Atlantic inflow to the northernmost Nordic Seas. Subsequently, a new period with increased strength of the AMOC occurred. Significant amounts of Ice-Rafted Debris (IRD) were deposited in the northernmost Nordic Seas before any major change of the global ice volume. This implies an early onset of local ice sheet growth, probably the result of enhanced inflow of Atlantic water to the northernmost Nordic Seas contemporary with a Northern Hemisphere summer insolation minimum. Contrasting sea-land conditions provided large moisture fluxes towards land, giving rise to rapid, early glacial growth. Throughout the glacial part of Marine Isotope Stage (MIS) 5, millennial-scale cold events occurred along the axis of the warm water transport, from the subtropics all the way to the northernmost Nordic Seas. Correlation of IRD events from sites in the Fram Strait, on the Voring Plateau, and in the North Atlantic provides evidence that the major Northern Hemisphere ice sheets at times responded coherently to the same forcing. The widespread distribution of these events highlights the importance of the oceanic influence on the regional climate system.