993 resultados para Contaminação por Pb


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Igneous rocks from the Philippine tectonic plate recovered on Deep Sea Drilling Project Legs 31, 58 and 59 have been analyzed for Sr, Nd and Pb isotope ratios. Samples include rocks from the West Philippine Basin, Daito Basin and Benham Rise (40-60 m.y.), the Palau-Kyushu Ridge (29-44 m.y.) and the Parece Vela and Shikoku basins (17-30 m.y.). Samples from the West Philippine, Parece Vela and Shikoku basins are MORB (mid-ocean ridge basalt)-like with 87Sr/86Sr = 0.7026 - 0.7032, 143Nd/144Nd = 0.51300 - 0.51315, and 206Pb/204Pb = 17.8 - 18.1. Samples from the Daito Basin and Benham Rise are OIB (oceanic island basalt)-like with 87Sr/86Sr = 0.7038 - 0.7040, 143Nd/144Nd = 0.51285 - 0.51291 and 206Pb/204Pb = 18.8 - 19.2. All of these rocks have elevated 207Pb/204Pb and 208Pb/204Pb compared to the Northern Hemisphere Regression Line (NHRL) and have delta207Pb values of 0 to +6 and delta208Pb values of +32 to +65. Lavas from the Palau-Kyushu Ridge, a remnant island arc, have 87Sr/86Sr = 7032 - 0.7035, 143Nd/144Nd = 0.51308 - 0.51310 and 206Pb/204Pb = 18.4 - 18.5. Unlike the basin magmas erupted before and after them, these lavas plot along the NHRL and have Pb-isotope ratios similar to modern Pacific plate MORB's. This characteristic is shared by other Palau-Kyushu Arc volcanic rocks that have been sampled from submerged and subaerial portions of the Mariana fore-arc. At least four geochemically distinct magma sources are required for these Philippine plate magmas. The basin magmas tap Source 1, a MORB-mantle source that was contaminated by EMI (enriched mantle component 1 (Hart, 1988, doi:10.1016/0012-821X(88)90131-8)) and Source 2, an OIB-like mantle source with some characteristics of EMII (enriched mantle component 2 (Hart, 1988)). The arc lavas are derived from Source 3, a MORB-source or residue mantle including Sr and Pb from the subducted oceanic crust, and Source 4, MORB-source or residue mantle including a component with characteristics of HIMU (mantle component with high U/Pb (Hart, 1988)). These same sources can account for many of the isotopic characteristics of recent Philippine plate arc and basin lavas. The enriched components in these sources which are associated with the DUPAL anomaly were probably introduced into the asthenosphere from the deep mantle when the Philippine plate was located in the Southern Hemisphere 60 m.y.b.p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The provenance of eolian dust supplied to deep-sea sediments has the potential to offer insights into changes in past atmospheric circulation. Specifically, measuring temporal changes in dust provenance can shed light on changes in the mean position of the Intertropical Convergence Zone (ITCZ), a region acting as a barrier separating wind-blown material derived from northern versus southern hemisphere sources. Here we have analyzed Nd, Sr, and Pb isotope ratios in the operationally-defined detrital component extracted from deep-sea sediments in the eastern equatorial Pacific (EEP) along a meridional transect at 110°W from 3°S to 7°N (ODP Leg 138, sites 848-853). Sr isotope results show that barite Sr has a significant influence on 87Sr/86Sr isotope ratios of samples in the upwelling zone of the EEP. However, sites located >3° or more away from the equator (sites 852 and 853) are believed to not be affected by barite Sr and provide useful detrital Sr signals. 208Pb/206Pb and 207Pb/206Pb ratios in all cores fall into the Pb-isotope space of five potential dust sources (Asia, North and Central/South America, Sahara, and Australia), with no distinct isotopic fingerprinting of the dominant source(s). epsilon-Nd values were most valuable for discerning detrital source provenance, and their values at all sites, ranging from ~5.46 to ~3.25, were more unradiogenic for sediments deposited during the last glacial than for those deposited during the Holocene. There are distinct latitudinal trends in the epsilon-Nd values, with more radiogenic values further south and less radiogenic values further north, excluding site 848. This distinction holds true for both Holocene and last glacial periods. For the most southerly site, 848, we invoke, for the first time, a distinct southern hemisphere Australian source as being responsible for the unradiogenic Nd isotope ratios. Both average last glacial and Holocene epsilon-Nd values show similar sharp gradients along the transect between 5.29°N and 2.77°N, suggesting little movement of the glacial ITCZ in the EEP. However, during the deglacial, this gradient is stronger and shifted further north between 5.29°N and 7.21°N, suggesting a more northerly, possibly stronger, deglacial ITCZ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elemental and Pb isotope measurements were performed on leachates and residues from surface sediments and two <50 cm cores (MC04 and MC16) collected along a NE-SW transect through Fram Strait. Geochemical and isotopic properties of residues from surface sediments define three distinct spatial domains within the Strait: 1) the easternmost edge of the Strait; 2) the eastern part of the Strait off the Svalbard margins; and 3) the western part of the Strait, influenced by supplies from Svalbard, the Nordic seas with possible contributions from northwestern Siberian margins, and sea ice and water outflow from the Arctic, respectively. Core MC16, in the third domain beneath the outflowing Arctic waters, spans the Last Glacial Maximum present interval. Sediments from this core were leached to obtain detrital (residues) and exchangeable (leachates) fractions. Detrital supplies to core MC16 are believed to originate mainly from melting of the overlying sea ice and thus can be used to document changes in Arctic sedimentary sources. Detrital 206Pb/204Pb and 208Pb/206Pb ratios illustrate two mixing trends, Trends A and B, corresponding to the pre- and post-Younger Dryas (YD) intervals, respectively. These trends represent binary mixtures with a common end-member (Canadian margins) and either a Siberian (Trend A) or Greenland (Trend B) margin end-member. The YD is marked by an isotopic excursion toward the Canadian end-member, suggesting a very active Beaufort Gyre possibly triggered by massive drainage of the Laurentide ice sheet. Pb isotope compositions of leachates, thought to represent the signature of the overlying water masses, define a unique linear trend coincident with Trend A. This suggests that water masses acquired their signature through exchange with particulate fluxes along the Canadian and Siberian continental margins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Maud Belt in Dronning Maud Land (western East Antarctic Craton) preserves a high-grade polyphase tectono-thermal history with two orogenic episodes of Mesoproterozoic (1.2-1.0 Ga) and Neoproterozoic (0.6-0.5 Ga) age. New SHRIMP U-Pb zircon data from southern Gjelsvikfjella in the northeastern part of the belt make it possible to differentiate between a series of magmatic and metamorphic events. The oldest event recorded is the formation of an extensive 1140-1130 Ma volcanic arc. This was followed by 1104 ± 8 Ma granitoids that might represent, together with so far undated mafic dykes, part of a decompression melting-related bimodal suite that reflects the sub-continental Umkondo igneous event. The first high-grade metamorphism is constrained at 1070 Ma. The metamorphic age data are similar to those obtained from other parts of the Maud Belt, but also from the Namaqua-Natal Belt in South Africa, but the preceding arc formation was diachronous in the two belts. This indicates that the two belts did not form a continuous volcanic arc unit as suggested in previous models, but became connected only at the end of the Mesoproterozoic. Intense reworking during the Neoproterozoic, probably as a result of continent-continent collision between components of Gondwana, is indicated by ductile refliation, further high-grade metamorphic recrystallisation and metamorphic zircon overgrowths at approximately 530 Ma. This was followed by late- to post-tectonic magmatism, reflected by 500 Ma granite bodies and 490 Ma aplite dykes as well as a 480 Ma gabbro body.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present new U-Pb zircon (SHRIMP) data on rocks from Mt Newton and Cumpston Massif in the southern Prince Charles Mountains. Our data demonstrate that Mt Newton was affected by a newly proposed Palaeoproterozoic "Newton" Orogeny at c. 2100-2200 Ma. Sedimentation, felsic volcanism (c. 2200 Ma), metamorphism and folding, followed by granite intrusion (c. 2100 Ma), suggest development of a trough or aulacogene in the area during the early Palaeoproterozoic. An orthogneiss from Cumpston Massif yielded an age of c. 3180 Ma for granitic protolith emplacement, which is in good agreement with many U-Pb zircon ages from similar rocks in the southern Mawson Escarpment. A syn- to late-tectonic muscovite-bearing pegmatite from Cumpston Massif yielded a c. 2500 Ma date of emplacement, which indicates early Palaeoproterozoic activity in this block, probably in response to a tectono-magmatic episode in the Lambert Terrane bordering the Ruker Terrane in the northeast. The correlation of tectono-magmatic events in both the Ruker and Lambert terranes of the southern Prince Charles Mountains provides evidence for their common evolution during the Proterozoic.